两个Bounding Box的IOU计算代码】的更多相关文章

Bounding Box的数据结构为(xmin,ymin,xmax,ymax) 输入:box1,box2 输出:IOU值 import numpy as np def iou(box1,box2): assert box1.size()==4 and box2.size()==4,"bounding box coordinate size must be 4" bxmin = np.max(box1[0],box2[0]) bymin = np.max(box1[1],box2[1])…
Torch 两个矩形框重叠面积的计算 (IoU between tow bounding box) function DecideOberlap(BBox_x1, BBox_y1, BBox_x2, BBox_y2, BBox_gt_x1, BBox_gt_y1, BBox_gt_x2, BBox_gt_y2) x1 = BBox_x1; y1 = BBox_y1; width1 = BBox_x2 - BBox_x1; height1 = BBox_y2 - BBox_y1; x2 = BBo…
引言 在前面的一篇文章中讲述了怎样通过模型的顶点来求的模型的包围球,而且还讲述了基本包围体除了包围球之外,还有AABB包围盒.在这一章,将讲述怎样依据模型的坐标求得它的AABB盒. 表示方法 AABB盒的表示方法有非常多,总结起来有例如以下的三种情况: Max-min表示法:使用一个右上角和左下角的点来唯一的定义一个包围体 Center-radious表示法:我们用center点来表示中点,radious是一个数组,保存了包围盒在x方向,y方向,z方向上的半径. Min-Width表示方法:我们…
论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,IoU是最流行的评价准则.然而,在对边界框的参数进行优化时,常用到距离损失,而按照IOU的标准则是取其最大值,二者之间是有一定差别的.对一个标准进行优化的目标函数是其标准本身.比如,对于2D的坐标对齐的边界框,可以直接使用IoU作为回归损失.然而,该方法存在一个弊端,就是当两个边界框不发生重叠时,Io…
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:34:55 Paper: https://arxiv.org/pdf/1902.09630.pdf Project page: https://giou.stanford.edu/ Code: https://github.com/generalized-iou 1. Background and M…
1. 小吐槽 OverFeat是我看的第一篇深度学习目标检测paper,因为它是第一次用深度学习来做定位.目标检测问题.可是,很难懂...那个bounding box写得也太简单了吧.虽然,很努力地想理解还找了很多博客.论文什么.后来,还是看RCNN,总算有点理解. 2. 对bounding box的误解 我一直以为卷积网络最后可以得到四个值:分别表示学习到的bounding box坐标,然后回归的目标是将这四个坐标与ground truth的四个坐标进行比较回归.其实不是这样的!正文如下 3.…
上节,我们学习了如何通过卷积网络实现滑动窗口对象检测算法,但效率很低.这节我们讲讲如何在卷积层上应用这个算法. 为了构建滑动窗口的卷积应用,首先要知道如何把神经网络的全连接层转化成卷积层.我们先讲解这部分内容,并演示卷积的应用过程. 一 卷积的滑动窗口实现 假设对象检测算法输入一个 14×14×3 的图像,图像很小,不过演示起来方便.在这里过滤器大小为 5×5,数量是 16, 14×14×3 的图像在过滤器处理之后映射为 10×10×16.然后通过参数为 2×2 的最大池化操作,图像减小到 5×…
简介 Bounding Box非常重要,在rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000都会用到. 先看图 对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal.那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5),那么这张图相当于没有正确的检测出飞机. 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Gr…
Bounding Box预测(Bounding box predictions) 在上一篇笔记中,你们学到了滑动窗口法的卷积实现,这个算法效率更高,但仍然存在问题,不能输出最精准的边界框.在这个笔记中,我们看看如何得到更精准的边界框.   在滑动窗口法中,你取这些离散的位置集合,然后在它们上运行分类器,在这种情况下,这些边界框没有一个能完美匹配汽车位置,也许这个框(编号1)是最匹配的了.还有看起来这个真实值,最完美的边界框甚至不是方形,稍微有点长方形(红色方框所示),长宽比有点向水平方向延伸,有…
http://www.jb51.net/article/55941.htm C#实现: 复制代码 代码如下: #region 计算字符串相似度        /// <summary>         /// 计算字符串相似度         /// </summary>         /// <param name="str1">字符串1</param>         /// <param name="str2&qu…