基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 Keras.MXNet.Tensorflow 都封装了自己的基础数据集,如 MNIST.cifar 等.如果我们要在不同平台使用这些数据集,还需要了解那些框架是如何组织这些数据集的,需要花费一些不必要的时间学习它们的 API.为此,我们为何不创建属于自己的数据集呢?下面我仅仅使用了 Numpy 来…
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开. 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开.但为什么效果不好,主要原因是你很难保证样本点的分布会如图所示那么规则,我们无法控制其分布,当绿色的点中混杂几个蓝色的点,就很难分开了,及时用曲线可以分开,这…
tiny-dnn是一个基于DNN的深度学习开源库,它的License是BSD 3-Clause.之前名字是tiny-cnn是基于CNN的,tiny-dnn与tiny-cnn相关又增加了些新层.此开源库很活跃,几乎每天都有新的提交,因此下面详细介绍下tiny-dnn在windows7 64bit vs2013的编译及使用. 1.      从https://github.com/tiny-dnn/tiny-dnn 下载源码: $ git clone https://github.com/tiny-…
一.深度学习在小数据集的表现 深度学习在小数据集情况下获得好效果,可以从两个角度去解决: 1.降低偏差,图像平移等操作 2.降低方差,dropout.随机梯度下降 先来看看深度学习在小数据集上表现的具体观点,来源于<撕起来了!谁说数据少就不能用深度学习?这锅俺不背!> 原文:https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/ 1.样本数量少于100个,最好不要使用深度学习 倘若你的样本数量少于100个,最好不要使用…
今天在看网上的视频学习深度学习的时候,用到了CIFAR-10数据集.当我兴高采烈的运行代码时,却发现了一些错误: # -*- coding: utf-8 -*- import pickle as p import numpy as np import os def load_CIFAR_batch(filename): """ 载入cifar数据集的一个batch """ with open(filename, 'r') as f: datadi…
相关的代码都在Github上,请参见我的Github,https://github.com/lijingpeng/deep-learning-notes 敬请多多关注哈~~~ All in one docker 如果你不想单独安装每个深度学习组件,并且厌倦于安装过程中的各种依赖冲突等问题,那么推荐你使用Docker来搭建深度学习工作环境.下面是一个可以参考的 All in one docker 环境.几乎包含了所有的流行的深度学习框架,并且分别有CPU版本和GPU版本,与虚拟机不同的是,Dock…
一.可视化方法 条形图 饼图 箱线图(箱型图) 气泡图 直方图 核密度估计(KDE)图 线面图 网络图 散点图 树状图 小提琴图 方形图 三维图 二.交互式工具 Ipython.Ipython notebook Plotly 三.Python IDE类型 PyCharm,指定了基于Java Swing的用户界面 PyDev,基于SWT的用户界面(适用Eclipse) IEP(Interactive Editor for Pyhton),交互式编辑器 Enthought中的Canopy:以PyQt…
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参数说明:x,y表示需要比较的两组数 3.tf.cast(y, 'float') # 将布尔类型转换为数字类型 参数说明:y表示输入的数据,‘float’表示转换的数据类型 4.tf.argmax(y, 1) # 返回每一行的最大值的索引 参数说明:y表示输入数据,1表示每一行的最大值的索引,0表示每…
MINIST手写数据集 压缩包版: http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-uby…
本人新写的3个pyhton脚本. (1)单张图片的resize: # coding = utf-8 import Image def convert(width,height): im = Image.open("C:\\workspace\\PythonLearn1\\test.jpg") out = im.resize((width, height),Image.ANTIALIAS) out.save("C:\\workspace\\PythonLearn1\\test.…