题目链接:http://acm.uestc.edu.cn/#/problem/show/1344 区间加等差数列本质上就是区间修改区间查询,本来想用线段树做,结果这个题就是卡空间和时间……不得已学了区间修改区间查询的树状数组. #include<bits/stdc++.h> using namespace std; ; +; int a[maxn]; int N; int tree[maxn]; int tree2[maxn]; int lowbit(int x) { return x&…
区间加等差数列单点查询 思路: 差分,通过树状数组修改,然后保存两个数组,一个存公差,一个存和 然后正常操作即可 在学校潦草写的很潦草啦 代码如下: #include<cstdio> #include<cstring> #include<algorithm> #define MAXN 100010 using namespace std; int a[MAXN][2],p[MAXN],n; int lowbit(int x) {     return x&(-x…
QAQ一道线段树好题 题目大意: 给定一个有n个数的数列,共m种操作,有两种操作 \(1\ l\ r\ k\ d\)表示将\(a[l]\)~\(a[r]\)的数加一个以k为首相,d为公差 \(2\ x\)表示求\(a[x]\)是多少 QwQ又是一道不会的题 暴力修改肯定会T飞 如果可以用线段树进行区间修改呢?? 我们考虑,对于一段区间\([l,r]\),我们只需要记录它的区间的首相和公差,就能将这个标记下传了 QwQ哇,那可以只使用这个线段树进行一个标记下传了(所以没有up函数) 这里展示一下p…
题目链接:戳我 线段树中差分和前缀和的应用 其实对于加上等差数列的操作我们可以分成这样三步-- update(1,1,n,l,l,k); if(r>l) update(1,1,n,l+1,r,d); if(r!=n) update(1,1,n,r+1,r+1,-(r-l)*d-k); 然后查询的时候1到当前位置的和就是这个数的值啦! 代码如下: #include<iostream> #include<cstdio> #include<algorithm> #inc…
考虑令$b_{i}=a_{i+1}-a_{i}$,那么1操作相当于对L加上K,对(L,R]区间加上D,对R+1减去K+(R-L)*D,然后询问区间和即可 1 #include<bits/stdc++.h> 2 using namespace std; 3 #define L (k<<1) 4 #define R (L+1) 5 #define mid (l+r>>1) 6 int n,m,p,x,y,k,d,a[100005],f[400005],laz[400005]…
\(Link\) \(\color{red}{\mathcal{Description}}\) 给你一个数列,要求支持单点查询\(and\)区间加等差数列. \(\color{red}{\mathcal{Solution}}\) 哈哈哈哈这个题十分的有意思,至于为什么有意思等会儿再说~ 其实我们观察这两个操作,单点查询--就是那个\(naive\)的单点查询,那么区间加等差数列呢?我们可以思考一下等差数列的性质--存在公差.不妨考虑差分 \(emmm\)发现我好像还没有在博客园里提过差分--那么…
传送门 解题思路 区间加等差数列+单点询问,用差分+线段树解决,线段树里维护的就是差分数组,区间加等差数列相当于在差分序列中l位置处+首项的值,r+1位置处-末项的值,中间加公差的值,然后单点询问就相当于在差分数列中求前缀和. #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> using namespace std; ; typedef long long LL;…
[前言] 作为一个什么数据结构都不会只会CDQ分治和分块的蒟蒻,面对区间加&区间求和这么难的问题,怎么可能会写线段树呢 于是,用CDQ分治解决区间加&区间求和这篇习作应运而生 [Part.I]区间加&区间求和的数据结构做法 [一]线段树 裸题... 1141ms #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include…
题意:区间加,区间乘,单点询问 思路:假设一个点为a,那么他可以表示为m * a + sum,所以区间加就变为m * a + sum + sum2,区间乘变为m * m2 * a + sum * m2.左右两边的块要先puhs down. 代码: #include<cmath> #include<set> #include<map> #include<queue> #include<cstdio> #include<vector> #…
题目 P1438 无聊的数列 解析: 先考虑修改,用差分的基本思想,左端点加上首项\(k\),修改区间\((l,r]\)内每个数的差分数组都加上公差\(d\),最后的\(r+1\)再减去\(k+(r-l)\times d\). 查询的话就是求出\(1-p\)的前缀和,也就是区间求和. 不难看出,这实际上就是一个点修改+区间修改+区间求和的题,所以直接上线段树,用线段树维护差分数组. 这个题目还有坑点就是要判断\(l,r\)的大小关系和\(r+1\)是否出界. 代码 #include <bits/…