Word2Vec中文语料实战】的更多相关文章

http://blog.csdn.net/gnehcuoz/article/details/52136371…
一.利用wiki中文语料进行word2vec模型构建 1)数据获取 到wiki官网下载中文语料,下载完成后会得到命名为zhwiki-latest-pages-articles.xml.bz2的文件,里面是一个XML文件 下载地址如下:https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 其中:https://dumps.wikimedia.org/zhwiki/latest/提供wiki各种文…
最近在工作之余学习NLP相关的知识,对word2vec的原理进行了研究.在本篇文章中,尝试使用TensorFlow自行构建.训练出一个word2vec模型,以强化学习效果,加深理解. 一.背景知识: 在深度学习实践中,传统的词汇表达方式是使用one-hot向量,其中,向量的维度等于词汇量的大小.这会导致在语料较为丰富,词汇量较大的时候,向量的维度过长,进而产生一个相当大的稀疏矩阵,占用不少内存开销,降低机器运行速度.而word2vec则为这个问题提供了一种解决方案. word2vec是一个用来产…
word2vec介绍 word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间的距离. 它将term转换成向量形式,可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. word2vec计算的是余弦值,距离范围为0-1之间,值越大代表两个词关联度越高. 词向量:用Distributed Representation表示词,通常…
word2vec相关基础知识.下载安装參考前文:word2vec词向量中文文本相似度计算 文件夹: word2vec使用说明及源代码介绍 1.下载地址 2.中文语料 3.參数介绍 4.计算相似词语 5.三个词预測语义语法关系 6.关键词聚类 1.下载地址 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 执行 make 编译word2vec工具: Makefile的编译代码在makefile.txt文件里,先改名makefile.txt 为M…
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1.训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词后的train_jieba.txt和test_jieba.txt,看一下部分内容: fenci_path = '/content/drive/My Drive/NLP/dataset/Fudan/train_jieba.txt' with open(fenci_path,'r',encoding='…
代码已上传到github:https://github.com/taishan1994/tensorflow-text-classification 往期精彩: 利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 利用CNN进行中文文本分类(数据集是复旦中文语料) 利用transformer进行中文文本分类(数据集是复旦中文语料) 基于tensorflow的中文文本分类 数据集:复旦中文语料,包含20类数据集下载地址:h…
手记实用系列文章: 1 结巴分词和自然语言处理HanLP处理手记 2 Python中文语料批量预处理手记 3 自然语言处理手记 4 Python中调用自然语言处理工具HanLP手记 5 Python中结巴分词使用手记 语料预处理封装类: #coding=utf-8 import os import jieba import sys import re import time import jieba.posseg as pseg sys.path.append("../") jieba…
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 上一节我们利用了RNN(GRU)对中文文本进行了分类,本节我们将继续使用CNN对中文文本进行分类. 数据处理还是没有变,只是换了个模型,代码如下: # coding: utf-8 from __future__ import print_function import os import sys import time from datetime import time…
环境: win7+python3.5 1. 下载wiki中文分词语料   使用迅雷下载会快不少,大小为1个多G      https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2  2. 安装opencc用于中文的简繁替换    安装exe的版本   到https://bintray.com/package/files/byvoid/opencc/OpenCC 中下载 opencc-1.0.1-w…
软件:IDEA2014.Maven.HanLP.JDK: 用到的知识:HanLP.Spark TF-IDF.Spark kmeans.Spark mapPartition; 用到的数据集:http://www.threedweb.cn/thread-1288-1-1.html(不需要下载,已经包含在工程里面): 工程下载:https://github.com/fansy1990/hanlp-test . 1.问题描述 现在有一个中文文本数据集,这个数据集已经对其中的文本做了分类,如下: 其中每个…
在Linux上安装好word2vec, 进入trunk文件夹,把分词后的语料文件放在trunk文件夹内,执行:./word2vec -train tt.txt -output vectors.bin -cbow 1 -size 80 -window 5 -negative 80 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15 其中tt.txt是刚才分词后的输出文件,vectors.bin是训练后输出的文件,-cbow 0表示不使用cbow模型,…
背景及思路: 需求:要做 创建新卡 接口的测试,要求: 1. 不需要每次手动修改请求参数. 方案:文中先用excle将数据准备好,导出为csv格式,再用jmeter的csv请求进行参数化 2. 卡号需要唯一: 方案:文中用jmeter的beanshell按时间戳加随机数生成 3. 请求参数中有一个参数,会根据相应的请求参数生成(文中的sign值),接口请求会验证sign是否和相应请求参数对应: 方案: 1. 文中将生成sign的源码打包放在jmeter的lib\ext\ 下, 2. 再用jmet…
以plato使用的metalwoz数据集的INSURANCE为例,进行语料的汉化过程. 1. 下载数据集 微软的数据集,下载地址:https://www.microsoft.com/en-us/research/project/metalwoz/ 2. 将语料翻译成中文,并分词 先是使用了有道云的翻译接口,调用几百次之后,被封了不能用. 随后换了百度云的通用翻译接口,免费的. 代码见:https://github.com/xuehuiping/metalwoz_zh 参考: 文档 http://…
分词是自然语言处理中最基本的一个任务,这篇小文章不介绍相关的理论,而是介绍一个电子病历分词的小实践. 开源的分词工具中,我用过的有jieba.hnlp和stanfordnlp,感觉jieba无论安装和使用都比较便捷,拓展性也比较好.是不是直接调用开源的分词工具,就可以得到比较好的分词效果呢?答案当然是否定的.尤其是在专业性较强的领域,比如医疗行业,往往需要通过加载相关领域的字典.自定义字典和正则表达式匹配等方式,才能得到较好的分词效果. 这次我就通过一个电子病历分词的小实践,分析在具体的分词任务…
cut_sentence.py import string import jieba import jieba.posseg as psg import logging #关闭jieba日制 jieba.setLogLevel(logging.INFO) jieba.load_userdict("./corpus/keywords.txt") stopwords_path = "./corpus/stopwords.txt" stopwords = [i.strip…
1.对语料进行分析 基本目录如下: 其中train存放的是训练集,answer存放的是测试集,具体看下train中的文件: 下面有20个文件夹,对应着20个类,我们继续看下其中的文件,以C3-Art为例: 每一篇都对应着一个txt文件,编码格式是gb18030.utf8文件夹下的是utf-8编码格式的txt文件. 其中C3-Art0001.txt的部分内容如下: 2.数据预处理 (1)将文本路径存储到相应的txt文件中 我们要使用数据,必须得获得文本以及其对应的标签,为了方便我们进行处理,首先将…
字符集对应配置文件:/etc/sysconfig/i18n 先备份再修改: 备份:cp /etc/sysconfig/i18n /etc/sysconfig/i18n.oldboy.20150521 修改:sed -i ‘s#LANG=”en_US.UTF-8”#LANG=zh_CN.UTF-8#g’/etc/sysconfig/i18n 生效:. /etc/sysconfig/i18n 或 source /etc/sysconfig/i18n 再改选项…
Python 包.模块.类以及代码文件和目录的一种管理方案     Numpy 小结   用 Python 3 的 async / await 做异步编程  K-means 在 Python 中的实现 Python在大数据分析及机器学习中的兵器谱  常用python机器学习库总结  这底下有很多总结链接 常用机器学习框架  书籍推荐   Python NLTK结合stanford NLP工具包进行文本处理   NLTK中文语料库sinica_treebank Python nltk载入自己的中文…
在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 然后解压文件 文件夹里是一个这个文件 步骤二:安装依赖库 我们需要安装一些依赖库,有numpy.scipy以及gensim,安装gensim依赖于scipy…
最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了视线.维基百科官方提供了一个很好的维基百科数据源:https://dumps.wikimedia.org,可以方便的下载多种语言多种格式的维基百科数据.此前通过gensim的玩过英文的维基百科语料并训练LSI,LDA模型来计算两个文档的相似度,所以想看看gensim有没有提供一种简便的方式来处理维基…
google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算. word2vec项目首页:https://code.google.com/p/word2vec/,文档比较详尽,很容易上手.可能对于不同的系统和gcc版本,需要稍微改一下代码和makefile.具体到我的mac系统,源代码中所有#include <malloc.h>的地方都需要…
影视剧字幕聊天语料库特点,把影视剧说话内容一句一句以回车换行罗列三千多万条中国话,相邻第二句很可能是第一句最好回答.一个问句有很多种回答,可以根据相关程度以及历史聊天记录所有回答排序,找到最优,是一个搜索排序过程. lucene+ik.lucene开源免费搜索引擎库,java语言开发.ik IKAnalyzer,开源中文切词工具.语料库切词建索引,文本搜索做文本相关性检索,把下一句取出作答案候选集,答案排序,问题分析. 建索引.eclipse创建maven工程,maven自动生成pom.xml文…
--  这篇文章是一个学习.分析的博客 --- 1.准备数据与预处理 首先需要一份比较大的中文语料数据,可以考虑中文的维基百科(也可以试试搜狗的新闻语料库).中文维基百科的打包文件地址为 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 中文维基百科的数据不是太大,xml的压缩文件大约1G左右.首先用 process_wiki_data.py处理这个XML压缩文件,执行:python pr…
深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平.百度在中文语音识别上取得了97%的准确率,已经超过了人类的识别能力. 随着深度学习在越来越多的领域中取得了突破性进展,自然语言处理这一人工智能的重要领域吸引了大批的研究者的注意力.最近谷歌发布了基于深度学习的机器翻译(GNMT),和基于短语的机器翻译相比,错误率降低了55%-85%以上,从而又引发…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目,根据自己的需求进行开发. 很多内容下面这个英文项目: Inspired by https://github.com/jtoy/awesome-tensorflow 官方网站 官网:https://www.tensorflow.org/ 中文:https://tensorflow.google.cn/…
Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目,根据自己的需求进行开发. 很多内容下面这个英文项目: Inspired by https://github.com/jtoy/awesome-tensorflow 官方网站 官网:https://www.tensorflow.org/ 中文:https://tensorflow.google.cn/…
Python NLTK 获取文本语料和词汇资源 作者:白宁超 2016年11月7日13:15:24 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集.模型上提供了全面.易用的接口,涵盖了分词.词性标注(Part-Of-Speech tag, POS-tag).命名实体识别(Named Entity Recognition, NER).句法分析(Syntactic Parse)等各项 NLP 领域的功能.本文主要介绍NLTK(Na…
word2vec 是google 推出的做词嵌入(word embedding)的开源工具. 简单的说,它在给定的语料库上训练一个模型,然后会输出所有出现在语料库上的单词的向量表示,这个向量称为"word embedding".基于这个向量表示,可以计算词与词之间的关系,例如相似性(同义词等),语义关联性(中国 - 北京 = 英国 - 伦敦)等.NLP中传统的词表示方法是 one-hot representation, 即把每个单词表示成dim维的稀疏向量,dim等于词汇量的大小.这个…