1    I either LOVE Brokeback Mountain or think it’s great that homosexuality is becoming more acceptable!:1    Anyway, thats why I love ” Brokeback Mountain.1    Brokeback mountain was beautiful…0    da vinci code was a terrible movie.0    Then again…
一.前述 VGG16是由16层神经网络构成的经典模型,包括多层卷积,多层全连接层,一般我们改写的时候卷积层基本不动,全连接层从后面几层依次向前改写,因为先改参数较小的. 二.具体 1.因为本文中代码需要依赖OpenCV,所以第一步先安装OpenCV 因为VGG要求输入244*244,而数据集是28*28的,所以需要通过OpenCV在代码里去改变. 2.把模型下载后离线放入用户的管理目录下面,这样训练的时候就不需要从网上再下载了 3.我们保留的是除了全连接的所有层. 4.选择数据生成器,在真正使用…
情感分析简介   文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性文本进行分析.处理.归纳和推理的过程.   本文将介绍情感分析中的情感极性(倾向)分析.所谓情感极性分析,指的是对文本进行褒义.贬义.中性的判断.在大多应用场景下,只分为两类.例如对于"喜爱"和"厌恶"这两个词,就属于不同的情感倾向.   本文将详细介绍如何使用深度学习…
2018-07-19 全部谷歌渣翻加略微修改 大家将就的看哈 建议大佬们还是看看原文 点击收获原文 其中用到的示例文件 multi-output-classification 大家可以点击 下载 . 几周前,我们讨论了如何使用Keras和深度学习进行多标签分类. 今天我们将讨论一种称为多输出分类的更先进的技术. 那么,两者之间的区别是什么?你怎么跟踪学习所有这些东西呢? 虽然它可能有点令人困惑,特别是如果你不熟悉深度学习,这就是我如何区分它们的: 在多标签分类中,您的网络在网络末端只有一组完全连…
Tensorflow 1.4中,Keras作为作为核心模块可以直接通过tf.keas进行调用,但是考虑到keras对tfrecords文件进行操作比较麻烦,而将keras模型转成tensorflow中的另一个高级API -- Estimator模型,然后就可以调用Dataset API进行对tfrecords进行操作用来训练/评估模型.而keras本身也用到了Estimator API并且提供了tf.keras.estimator.model_to_estimator函数将keras模型可以很方…
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow. 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型. 前言,对两分类和多分类的概念描述 (前言是整理别人博客的笔记https://blog.csdn.net/qq_22238533/article/details/77774223) 1,在LR(逻辑回归)中,如何进行多分类? 一般情…
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的tensorflow版亦支持此种网络模型,万事俱备,就放开手做吧.前面说过,我们需要通过大量的训练数据训练我们的模型,因此首先要做的就是把训练数据准备好,并将其输入给CNN.前面我们已经准备好了2000张脸部图像,但没有进行标注,并且还需要将数据加载到内存,以方便输入给CNN.因此,第一步工作就是加载并…
转载自:https://keras-cn.readthedocs.io/en/latest/legacy/blog/cnn_see_world/ 文章信息 本文地址:http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html 本文作者:Francois Chollet 使用Keras探索卷积网络的滤波器 本文中我们将利用Keras观察CNN到底在学些什么,它是如何理解我们送入的训练图片的.我们将使用Keras…
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采用的例子是著名的UCI Machine Learning Repository中的鸢尾花数据集(iris flower dataset). 1. 编码输出便签 多类分类问题与二类分类问题类似,需要将类别变量(categorical function)的输出标签转化为数值变量.这个问题在二分类的时候直…
LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/   neg.xls是这样的 pos.xls是这样的neg=pd.read_excel(‘neg.xls’,header=None,index=None) pos=pd.read_excel(‘pos.xls’,header=None,index=None) #读取训练语料完毕 pos[‘mark’]=1 neg[‘mark’]=0 #给训练语料贴上标签 pn=pd.conc…
import numpy as np from keras.datasets import boston_housing from keras import layers from keras import models from keras import optimizers from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt def main(): (train_data, train…
import numpy as np from keras.datasets import reuters from keras import layers from keras import models from keras import optimizers from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt def vectorize_data(x, dim = 10000): r…
from keras.datasets import imdb from keras import layers from keras import models from keras import optimizers import matplotlib.pyplot as plt import numpy as np def vectorize_data(x, dim = 10000): res = np.zeros([len(x), dim]) for i, string in enume…
from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() #train_images 和 train_labels 是训练集 train_images.shape#第一个数字表示图片张数,后面表示图片尺寸,和之前我在opencv上遇到的有所不同 #opencv上是前面表示图片尺寸,后面表示图片的通道数量 输出: (60000, 28,…
一.网络层 keras的层主要包括: 常用层(Core).卷积层(Convolutional).池化层(Pooling).局部连接层.递归层(Recurrent).嵌入层( Embedding).高级激活层.规范层.噪声层.包装层,当然也可以编写自己的层. 对于层的操作 layer.get_weights() #返回该层的权重(numpy array) layer.set_weights(weights)#将权重加载到该层 config = layer.get_config()#保存该层的配置…
1 TensorFlow 架构图 1.1 处理器 TensorFlow 可以在CPU.GPU.TPU中执行 1.2 平台 TensorFlow 具备跨平台能力,Windows .Linux.Android.IOS.Raspberry Pi.云端执行 1.3 分布式执行引擎 TensorFlow Distributed Execution Engine 分布式执行引擎 在深度学习中,最花时间的就是模型的训练,尤其大型的深度学习模型必须使用大量数据进行训练,需要数天乃至数周之久,TensorFlow…
最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下一个目标了. 目前最流行的框架莫过于Tensorflow了,但是只要接触过它的人,就知道它使用起来是多么让人恐惧.Tensorflow对我们来说,仿佛是一门高深的Deep Learning学习语言,需要具备很深的机器学习和深度学习功底,才能玩得转. Keras正是在这种背景下应运而生的,它是一个对开…
利用python 下paramiko模块无密码登录   上次我个大家介绍了利用paramiko这个模块,可以模拟ssh登陆远程服务器,并且可以返回执行的命令结果,这次给大家介绍下如何利用已经建立的密钥来实现无需输入密码就可以登录服务器,代码十分简单,下面来看看 1: [root@centos6 .ssh]# cat nopasswdSSH.py 2: #!/usr/bin/env python 3: import paramiko 4: hostname='133.214.210.124' 5:…
之前在BERT实战——基于Keras一文中介绍了两个库 keras_bert 和 bert4keras 但是由于 bert4keras 处于开发阶段,有些函数名称和位置等等发生了变化,那篇文章只用了 bert4keras 进行情感分析 于是这里新开了一篇文章将 2 个库都用一遍, bert4keras 也使用最新版本 本文所用bert4keras时间:2019-11-09 害怕 bert4keras 后续继续变化,需要稳定的可以先采用 keras_bert 数据集:https://github.…
利用Kali下的setoolkit进行钓鱼网站制作 1.打开kali2019,输入setoolkit,打开setoolkit模块 2.输入命令1,进入钓鱼攻击页面 3.输入命令2,进入web钓鱼攻击页面 4.输入命令3,进入到设置钓鱼页面选项 5.输入命令2,进入到克隆网页界面,回车继续,设置网页如下,我们用origin为例 6.回车开始进行克隆,一直回车直到如下界面 7.在网页输入Kali Ip地址,即可发现克隆的网页内容 8.输入账号密码,查看效果,后期可以利用内网穿透或者DNS域名更改,可…
RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统.文本分类等. 但由于梯度爆炸或梯度消失,RNN存在长期依赖问题,难以建立长距离的依赖关系,于是引入了门控机制来控制信息的累积速度,包括有选择地加入新信息,并有选择地遗忘之前积累的信息.比较经典的基于门控的RNN有LSTM(长短期记忆网络)和GRU(门控循环单元网络). 有关RNN,LSTM和GRU…
最近尝试了一下中文的情感分析. 主要使用了Glove和LSTM.语料数据集采用的是中文酒店评价语料 1.首先是训练Glove,获得词向量(这里是用的300d).这一步使用的是jieba分词和中文维基. 2.将中文酒店评价语料进行清洗,并分词.分词后转化为词向量的表示形式. 3.使用LSTM网络进行训练. 最终的正确率在91%左右 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 30 1…
1. 概述 在情感分析的应用领域,例如判断某一句话是positive或者是negative的案例中,咱们可以通过传统的standard neuro network来作为解决方案,但是传统的神经网络在应用的时候是不能获取前后文字之间的关系的,不能获取到整个句子的一个整体的意思,只能通过每一个词的意思来最终决定一句话的情感,这显然是不合理的,导致的结果就是训练出来的模型质量可能不是很高.那么这里就需要用到LSTM来解决这个问题了,LSTM能够很好的表达出句子中词的关系,能将句子当做一个整体来看待,而…
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶斯公式,计算出…
C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶…
Linux下的IO监控与分析 近期要在公司内部做个Linux IO方面的培训, 整理下手头的资料给大家分享下 各种IO监视工具在Linux IO 体系结构中的位置 源自 Linux Performance and Tuning Guidelines.pdf 1 系统级IO监控 iostat iostat -xdm 1    # 个人习惯 %util         代表磁盘繁忙程度.100% 表示磁盘繁忙, 0%表示磁盘空闲.但是注意,磁盘繁忙不代表磁盘(带宽)利用率高 argrq-sz   …
1. 背景介绍 文本情感分析是在文本分析领域的典型任务,实用价值很高.本模型是第一个上手实现的深度学习模型,目的是对深度学习做一个初步的了解,并入门深度学习在文本分析领域的应用.在进行模型的上手实现之前,已学习了吴恩达的机器学习和深度学习的课程,对理论有了一定的了解,感觉需要来动手实现一下了.github对应网址https://github.com/ble55ing/LSTM-Sentiment_analysis LSTM(Long Short-Term Memory)是长短期记忆网络,在自然语…
I2C 概述 I2C是philips提出的外设总线. I2C只有两条线,一条串行数据线:SDA,一条是时钟线SCL ,使用SCL,SDA这两根信号线就实现了设备之间的数据交互,它方便了工程师的布线. 因此,I2C总线被非常广泛地应用在EEPROM,实时钟,小型LCD等设备与CPU的接口中. linux下的驱动思路 在linux系统下编写I2C驱动,目前主要有两种方法,一种是把I2C设备当作一个普通的字符设备来处理,另一种是利用linux下I2C驱动体系结构来完成.下面比较下这两种方法: 第一种方…
1.前言 主要介绍在android手机上如何利用tcpdump抓包,用wireshark分析包. android tcpdump官网: http://www.androidtcpdump.com/ tcpdump  官网: http://www.tcpdump.org/ 2.准备 To use this application, you need to have: A Rooted Android Device (root权限) A Terminal Access Program  (终端程序)…
本文转载自:http://blog.csdn.net/wangpengqi/article/details/17711165 I2C 概述 I2C是philips提出的外设总线. I2C只有两条线,一条串行数据线:SDA,一条是时钟线SCL ,使用SCL,SDA这两根信号线就实现了设备之间的数据交互,它方便了工程师的布线. 因此,I2C总线被非常广泛地应用在EEPROM,实时钟,小型LCD等设备与CPU的接口中. linux下的驱动思路 在linux系统下编写I2C驱动,目前主要有两种方法,一种…