首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
决策树归纳算法之C4.5
】的更多相关文章
决策树归纳算法之C4.5
前面学习了ID3,知道了有关“熵”以及“信息增益”的概念之后. 今天,来学习一下C4.5.都说C4.5是ID3的改进版,那么,ID3到底哪些地方做的不好?C4.5又是如何改进的呢? 在此,引用一下前人的总结: ID3算法是决策树的一个经典的构造算法,在一段时期内曾是同类研究工作的比较对象,但通过近些年国内外学者的研究,ID3算法也暴露出一些问题,具体如下: (1)信息增益的计算依赖于特征数目较多的特征,而属性取值最多的属性并不一定最优. (2)ID3是非递增算法. (3)ID3是单变量决策树(在…
day-7 一个简单的决策树归纳算法(ID3)python编程实现
本文介绍如何利用决策树/判定树(decision tree)中决策树归纳算法(ID3)解决机器学习中的回归问题.文中介绍基于有监督的学习方式,如何利用年龄.收入.身份.收入.信用等级等特征值来判定用户是否购买电脑的行为,最后利用python和sklearn库实现了该应用. 1. 决策树归纳算法(ID3)实例介绍 2. 如何利用python实现决策树归纳算法(ID3) 1.决策树归纳算法(ID3)实例介绍 首先介绍下算法基本概念,判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属…
决策树归纳算法之ID3
学习是一个循序渐进的过程,我们首先来认识一下,什么是决策树.顾名思义,决策树就是拿来对一个事物做决策,作判断.那如何判断呢?凭什么判断呢?都是值得我们去思考的问题. 请看以下两个简单例子: 第一个例子 现想象一个女孩的母亲要给自己家的闺女介绍男朋友,女孩儿通过对方的一些情况来考虑要不要去,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. …
决策树构建算法之—C4.5
这个网站值得收藏一下,原文链接:http://shiyanjun.cn/archives/428.html 决策树算法的优越性在于:离散学习算法进行组合总可以表达任意复杂的布尔函数,并不受数据集的限制即学习没有饱和性,只是现实应用受限于时间和计算能力,一般不能满足不饱和性. C4.5是机器学习算法中的另一个分类决策树算法,它是基于ID3算法进行改进后的一种重要算法,相比于ID3算法,改进有如下几个要点: 用信息增益率来选择属性.ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,I…
机器学习之决策树(ID3 、C4.5算法)
声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决策树算法主要围绕两大核心问题展开:第一, 决策树的生长问题 , 即利用训练样本集 , 完成决策树的建立过程 .第二, 决策树的剪枝问题,即利用检验样本集 , 对形成的决策树进行优化处理.这里主要介绍分类树的两个经典算法:ID3算法和C4.5算法,他们都是以信息熵作为分类依据,ID3 是用信息增益,而C4.5…
决策树之ID3、C4.5、C5.0等五大算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- C5.0决策树之ID3.C4.5.C5.0算法 为了区分红蓝模块,先将能分的先划分开来(中间的红线,分为了一遍全蓝),然后再来细分(绿线). 决策树优势:为什么业务人喜欢,可以给你决策场景,因为模型可视化高,可以讲故事. 一.起源 最早的决策树算法起源于CLS(Concept Learning System)系统,即概念学习系统.它是最早的决策…
《机器学习实战》学习笔记第三章 —— 决策树之ID3、C4.5算法
主要内容: 一.决策树模型 二.信息与熵 三.信息增益与ID3算法 四.信息增益比与C4.5算法 五.决策树的剪枝 一.决策树模型 1.所谓决策树,就是根据实例的特征对实例进行划分的树形结构.其中有两种节点:内节点表示一个特征,叶子结点表示一个类(或称为标签). 2.在决策树中,从根节点开始,对实例的所有特征进行测试,根据测试结果,选择最合适的特征作为依据,将实例分配到其子节点上:此时,每一个子节点都对应着该特征(即父节点上的特征)的一个取值.之后一直递归下去,直到所有节点上所有实例的类都一样.…
【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(decision tree)算法基于特征属性进行分类,其主要的优点:模型具有可读性,计算量小,分类速度快.决策树算法包括了由Quinlan提出的ID3与C4.5,Breiman等提出的CART.其中,C4.5是基于ID3的,对分裂属性的目标函数做出了改进. 决策树模型 决策树是一种通过对特征属性的分类对…
决策树剪枝算法-悲观剪枝算法(PEP)
前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确了.由于完全决策树对训练样本的特征描述得“过于精确” ,无法实现对新样本的合理分析, 所以此时它不是一棵分析新数据的最佳决策树.解决这个问题的方法就是对决策树进行剪枝,剪去影响预测精度的分支.常见的剪枝策略有预剪枝(pre -pruning)技术和后剪枝(post -pruning )技术两种.预剪…
决策树 -- ID3算法小结
ID3算法(Iterative Dichotomiser 3 迭代二叉树3代),是一个由Ross Quinlan发明的用于决策树的算法:简单理论是越是小型的决策树越优于大的决策树. 算法归纳: 1.使用所有没有使用的属性并计算与之相关的样本熵值: 2.选取其中熵值最小的属性 3.生成包含该属性的节点 4.使用新的分支表继续前面步骤 ID3算法以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类:所以归根结底,是为了从一堆数据中生成决策树而采取的一种归纳方式: …