P4137 Rmq Problem / mex(主席树)】的更多相关文章

Code: #include<bits/stdc++.h> #define maxn 200001 using namespace std; void setIO(string s) { string in=s+".in"; freopen(in.c_str(),"r",stdin); } namespace tr { #define mid ((l+r)>>1) #define lson t[x].l #define rson t[x].r…
传送门 用主席树水莫队题…… 我们对于前缀和建立主席树,对于主席树中的每一个叶子节点表示它对应的数字最后出现的位置的编号,非叶子节点求左右节点的最小值,那么对于每一次询问$l,r$就是在第$r$棵主席树上找到权值$<l$的最左端的点,在主席树上二分即可. #include<bits/stdc++.h> #define mid ((l + r) >> 1) #define min(x,y) x < y ? x : y #define pushup(x) Tree[x].m…
正解:主席树 解题报告: 传送门$QwQ$ 本来以为是道入门无脑板子题,,,然后康了眼数据范围发现并没有我想像的那么简单昂$kk$ 这时候看到$n$的范围不大,显然考虑离散化?但是又感觉似乎布星?因为询问的是最小没有出现昂$kk$ 这时候考虑到答案显然要么是0要么是$a_{i}+1$?所以只用把$0,a_{i},a_{i}+1$离散化掉就成$QwQ$ 然后就主席树板子了$QwQ$?开权值线段树存这个位置当前最后一次出现的位置,然后每次就是找最小的最后一次出现位置<l的数就成$QwQ$ $over…
P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后对值域分块,这样求\(mex\)的复杂度就正确了 一种更优的做法是按值域建可持久化线段树,对每个节点维护当前值域区间的最小出现位置,然后查询的时候就从\(r\)的那棵树一直尽量往左边走就好了 Code: #include <cstdio> #include <cstring> cons…
题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\):若不等于\(mex\),没有影响. 取出数的时候,如果这个数出现的次数变为了\(0\),\(mex\)就和这个数取一个\(min\) 代码 #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10; int n, m,…
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空白叫做A[i-1].data+1, 开头和最尾也要这么插,意义是如果取不了A[i-1]了,最早能取的是啥数.要把这些空白也离散化然后扔主席树里啊. 主席树维护每个数A[i]出现的最晚位置(tree[i].data),查询时查询root[R]的树中最早的data<L的节点(这意味着该节点的下标离散化前代…
传送门 思路: 直接上主席树,对于每个询问\((l,r)\),我们在第\(r\)个版本的主席树中查询最晚出现的小于\(l\)最小的数就行了. 因为答案可能为\(a_i+1\),所以我们在离散化的时候考虑将\(a_i+1\)加进去. 一开始主席树部分没有思考清楚,还是对主席树的理解不够深入吧...其实就是一个维护前缀信息的数,后面的信息如果和前面有重复的,在这题中会直接将原来的覆盖掉.反正按照前缀树来思考就行啦~ #include <bits/stdc++.h> #define INF 0x3f…
一开始想的是莫队,然后维护几个bitset,然后瞎搞.脑子里想了想实现,发现并不好写. 还是主席树好写.我们维护一个权值的线段树,记录每一个权值的最后一次出现的位置下标.我们查询的时候要在前\(r\)颗线段树中找到第一个出现的位置下标小于\(l\)的数,在线段树上二分就行了. 这个想法还是非常巧妙的. #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include&…
https://www.luogu.org/problemnew/show/P4137 只会log^2的带修主席树.. 看了题解,发现有高妙的一个log做法:权值线段树上,设数i对应的值ma[i]为数i首次出现的位置(没有出现就是n+1) 如果把询问按左端点排序,这样就转化为:修改:...:询问:询问[1,r]的答案 修改问题不大 询问[1,r]就转化为查询当前权值线段树上最小的数i,其对应的ma[i]>r:维护一下区间最大值,然后线段树上二分即可 可持久化一下线段树,还可以支持在线 ...好吧…
区间mex问题,可以使用经典的记录上一次位置之后再上主席树解决. 不过主席树好像不是很好写哈,那我们写莫队吧 考虑每一次维护什么东西,首先记一个答案,同时开一个数组记录一下每一个数出现的次数. 然后些比较显然的性质:如果加入一个数时,答案只会增加:同样的删除一个数时,答案只会减小 利用好这些性质我们就愉快地上莫队即可不过复杂度很迷,转移的时候只能近似\(O(1)\) CODE #include<cstdio> #include<cctype> #include<cmath&g…