Opencv-Facial-Landmark-Detection 利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Note: OpenCV3.4+OpenCV-Contrib以及上支持Facemark 下面是Amusi具体利用OpenCV中的LBF算法进行人脸关键点检测的教程,**大家如果喜欢这个教程,记得给个star!**项目的教程和源码,只需要你在命令行或终端打开git后,输入下述命令即可,或者直接点击Clone or download…
Facial landmark detection  (Facial keypoints detection) OpenSourceLibrary: DLib Project Home:  http://dlib.net/ Git address:     https://github.com/davisking/dlib.git Example file:    git/dlib/examples/face_landmark_detection_ex.cpp #include <dlib/im…
源地址:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375 OCTOBER 18, 2015 BY SATYA MALLICK 51 COMMENTS Facial landmark detection using Dlib (left) and CLM-framework (right). Who sees the human face correctly: the photographer, the…
Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 Note:       OpenCV3.4以及上支持Facemark 原文:OpenCV实战:人脸关键点检测(FaceMark) PS:点击“阅读原文”,可以下载所有源码和模型,记得给star哦! 教程目录 测试环境 引言 Facemark API Facemark训练好的模型 利用OpenCV代码…
1.dlib.get_frontal_face_detector()  # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predictor(args['shape_predictor'])  # 获得人脸关键点检测器, predictor(gray, rect) gray表示输入图片,rect表示人脸框的位置信息 参数说明: args['shape_predoctor]  人脸检测器的权重参数地址 3.cv2.convexHull…
本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模型分析与压缩.html github项目:https://github.com/miaoerduo/dlib-face-landmark-compression 人脸关键点检测的技术在很多领域上都有应用,首先是人脸识别,常见的人脸算法其实都会有一步,就是把人脸的图像进行对齐,而这个对齐就是通过关键点…
上一个代码只能实现小数据的读取与训练,在大数据训练的情况下.会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进. 用keras实现人脸关键点检测 数据集:https://pan.baidu.com/s/1cnAxJJmN9nQUVYj8w0WocA 第一步:准备好需要的库 tensorflow  1.4.0 h5py 2.7.0 hdf5 1.8.15.1 Keras     2.0.8 opencv-python     3.3.0 numpy    1.13.3+mkl 第…
用keras实现人脸关键点检测 改良版:http://www.cnblogs.com/ansang/p/8583122.html 第一步:准备好需要的库 tensorflow  1.4.0 h5py 2.7.0 hdf5 1.8.15.1 Keras     2.0.8 opencv-python     3.3.0 numpy    1.13.3+mkl 第二步:准备数据集: data.7z 如图:里面包含着标签和数据 第三步:将图片和标签转成numpy array格式: def __data…
前言 依赖库:opencv 2.4.9 /dlib 19.0/libfacedetection 本篇不记录如何配置,重点在实现上.使用libfacedetection实现人脸区域检测,联合dlib标记人脸特征点,最后使用opencv的FaceRecognizer实现人脸识别. 准备工作 1.配置好Opencv2.4.9.(Opencv3.1需要另外下载一个包才有FaceRecognizer) 2.配置好dlib 19.0(版本其实没有多大关系) 3.配置好ShiQi.Yu的人脸检测库 思想 训练…
安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36m-win_amd64.whl,下载地址:https://pypi.org/project/dlib/19.6.1/#files vscode更改配置 其中shape_predictor_68_face_landmarks.dat官方训练数据下载地址:http://dlib.net/files/,里…
上学时候用matlab学过一些图像处理的基础知识,当时课程作业是用haar实现人脸检测 but当时是心思根本不在图像处理上,so找了个同学帮忙做的,自己没上心 然鹅天道好轮回,现在捡起来了原来的算法一脸懵逼,自己挖的坑再深也得跳下去啊! 先上一张经典的lena图镇场子! 流程图: 读取一张图片→转灰度图→人眼/人脸检测→标识出来→显示/保存结果 其中,重中之重就是怎样进行检测?下面主要讲一下openCV中现成的一种算法——Haar 算法详解请参考https://blog.csdn.net/pla…
https://blog.csdn.net/u011995719/article/details/79435615…
Dlib库中提供了正脸人脸关键点检测的接口,这里参考dlib/examples/face_landmark_detection_ex.cpp中的代码,通过调用Dlib中的接口,实现正脸人脸关键点检测的测试代码,测试代码如下: /* reference: dlib/examples/face_landmark_detection_ex.cpp This program shows how to find frontal human faces in an image and estimate th…
目前人脸检测和人脸的关键点的数据库根据关键点个数:5,20,21,29,68等.https://blog.csdn.net/XZZPPP/article/details/74939823该网页详细列出了相关数据集的网址.由于项目需要和评估数据集大小.我选择了21点的AFLW数据集.网上也有人将该数据放到百度网盘上,可以直接下载.由于数据放在.sqlite.可以通过可视化工具直接查看数据内容.https://www.jianshu.com/p/dfd6e0193460也可以通过代码来查看: imp…
人脸标记检测:ICCV2019论文解析 Learning Robust Facial Landmark Detection via Hierarchical Structured Ensemble 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Zou_Learning_Robust_Facial_Landmark_Detection_via_Hierarchical_Structured_Ensemble_ICCV_201…
记录cvSmooth函数的用法和 OpenCV自带的人脸检测. (1)cvSmooth函数 void cvSmooth( const CvArr* src, CvArr* dst,int smoothtype=CV_GAUSSIAN,int param1, int param2, double param3, double param4 ); src:输入图像. dst:输出图像. smoothtype平滑方法: CV_BLUR_NO_SCALE(简单不带尺度变换的模糊),对每个象素的 para…
前言: 人脸检測与识别一直是计算机视觉领域一大热门研究方向,并且也从安全监控等工业级的应用扩展到了手机移动端的app.总之随着人脸识别技术获得突破,其应用前景和市场价值都是不可估量的,眼下在学习openCV,自然不能放过这个领域.于是略微了解了下openCV下人脸检測的一些原理.为之后的人脸识别等研究做个小小的铺垫. 原理: 人脸检測属于目标检測(object detection) 的一部分,主要涉及两个方面 先对要检測的目标对象进行概率统计,从而知道待检測对象的一些特征,建立起目标检測模型.…
项目地址 https://github.com/guoyaohua/SmileyFace 开发环境 Visual Studio 2010 MFC + OpenCV 功能描述 静态图像人脸检测 视频人脸追踪检测 摄像头人脸检测 人脸切割显示 实时面部识别 样本自动采集 基于面部识别的程序锁 系统框图 人脸检测 人脸识别 系统截图 本程序以用户体验为中心,界面简洁.明了.易于操作.即使第一次使用该应用,也可以流利的操作. 1.主界面 2.人脸检测效果图--标准正脸 3.人脸检测效果图--人脸集 4.…
本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸),而其他的分类器可识别小的区域(如鼻子.眼睛和嘴). 1 Haar 级联的概念 图像会因灯光.视角.视距.摄像头抖动以及数字噪声的变化而使得细节变得不稳定.所以提取图像的细节对产生稳定分类结果和跟踪结果很有作用.这些提取的结果被称为特征. 专业的表述为:从图像数据中提取特征.虽然任意像素都可能影响多…
文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+Python3.x+Anaconda 安装Python以及Anaconda的步骤本文不予以讲解了,下面主要讲的是OpenCV的安装以及使用. OpenCV安装 安装numpy 如果没有numpy的话要先下载numpy,一般安装完Anaconda后就会自带很多库,这也是我推荐使用Anaconda的原因.…
摘要:利用opencv读取视频.图片并检测人脸,利用QT显示窗口,功能选择等 环境:Ubuntu18.04.OpenCV3.4.0.QT5.10.1 效果图: 代码如下(比较简单没什么注释): main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) { QApplication a(argc, argv); Widget w; w.setWindowTitle…
Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks 参考 1. 人脸关键点: 2. Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks; 完…
利用Landmarks进行人脸对齐裁剪是人脸检测中重要的一个步骤.效果如下图所示: 基本思路为: a.人脸检测 人脸的检测不必多说了,基本Cascade的方式已经很不错了,或者用基于HOG/FHOG的SVM/DPM等.这些在OpenCV,DLIB都有. b.在检测到的人脸上进行Landmarks检测,获得一系列的Landmark点 对齐算法很多,特别是前几年人脸对齐获得了巨大的成功. [1].One Millisecond Face Alignment with an Ensemble of R…
time:2015年10月09日 星期五 23时11分58秒 # opencv笔记6:角点检测 update:从角点检测,学习图像的特征,这是后续图像跟踪.图像匹配的基础. 角点检测是什么鬼?前面一篇学习笔记是各种模板操作,是图像增强技术. 那么我节写来应该继续找下有没有别的图像增强技术. 但是,我对增强还不是特别理解. 图像增强:划定ROI区域,然后想方设法将感兴趣的特征有选择的突出.注意,这可是不去考虑图像质量下降的原因的. 图像恢复:针对图像降质的原因,设法去补偿降质因素,从而使改善后的图…
0.引言  利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑:   使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用python 3 开发,借助Dlib进行 人脸嘴部20个特征点坐标(40维特征)的提取, 然后根据这 40维输入特征 和 1维特征输出(1代表有微笑 / 0代表没微笑)进行ML建模, 利用几种机器学习模型进行建模,达到一个二分类(分类有/无笑脸)的目的,然后分析模型识别精度和性能,并且可以识别给定图片的人脸是…
下图Github地址:Mask_RCNN       Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mask-RCNN_推断网络其一:总览『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合『计算机视觉』Mask…
0. 引言 利用机器学习的方法训练微笑检测模型,输入一张人脸照片,判断是否微笑: 精度在 95% 左右( 使用的数据集中 69 张没笑脸,65 张有笑脸 ): 图1 测试图像与检测结果 项目实现的笑脸识别,并不是通过 计算嘴唇角度,满足一定弧度认定为笑脸进行判定, 而是通过机器学习模型,让模型去 学习人脸嘴唇的坐标和判定笑脸的关系: 输入: 人脸嘴唇的坐标 输出: 有没笑脸  借助 Dlib 进行 人脸嘴部 20 个特征点坐标( 40 维特征)的提取,然后根据这 40 维输入特征 作为 模型输入…
3.2# Facial keypoints detection 作者:Stu. Rui QQ: 1026163725 原文链接:http://blog.csdn.net/i_love_home/article/details/51051888 该题主要任务是检測面部关键点位置 Detect the location of keypoints on face images 问题表述 在本问题中.要求计算面部关键点的位置,即关键点在图片中的百分比坐标. 因此该问题的机理就是 [0, 1] 范围内的数…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别.寻物联系在一起.关键点检测可以说是通往高层次视觉的重要基础.但本章节仅在低层次视觉上讨论点云处理问题,故所有讨论都在关键点检测上点到为止.NARF 算法实际上可以分成两个部分,第一个部分是关键点提取,第二个部分是关键点信息描述,本文仅涉及第一个部分. 在文章开始之前,有非常重要的一点要说明,点云中任意一点,都有一定概率作为关键点.关键点也是来自原始点云中的一个元素.和图像的边缘提取或者关键点检测算法追求n…