作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 TensorFlow 实战系列:https://www.showmeai.tech/tutorials/43 本文地址:https://www.showmeai.tech/article-detail/327 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 股票价格数据是一个时间序列形态的数据,诚然,股市的涨落和各种利好利空消息更相…
教程 | 没有博士学位,照样玩转TensorFlow深度学习 机器之心2017-01-24 12:32:22 程序设计 谷歌 操作系统 阅读(362)评论(0) 选自Codelabs 机器之心编译 参与:侯韵楚.王宇欣.赵华龙.邵明.吴攀 本文内容由机器之心编译自谷歌开发者博客的 Codelabs 项目.据介绍,Google Developers Codelabs 提供了有引导的.教程式的和上手式的编程体验.大多数 Codelabs 项目都能帮助你了解开发一个小应用或为一个已有的应用加入新功能的…
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU).谷歌(TPU).NVidia(GPU).华为和寒武纪,发现所有的AI芯片都支持TensorFlow框架. 从收集到的信息来看: 1.目前TensorFlow在智能边缘计算中是主流,例如TensorFlow提供了移动端应用开发API,参考资料中包含了示例. 2.AI芯片对深度学习的加速效果,其中NVI…
TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6   原文出处: 我爱计算机 (@tobe迪豪 )    作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MX…
http://blog.jobbole.com/105602/ 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和…
TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和自然语言处理等场景下都有丰富的应用.最近流行的Keras框架底层默认使用TensorFlow,著名的斯坦福CS231n课程使用TensorFlo…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源代码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度.基础方面的非常多,随便看看就能够,仅仅是非常多没有把细节说得清楚和明确: 能把细…
原文:Deep Learning with TensorFlow Second Edition 协议:CC BY-NC-SA 4.0 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 TensorFlow 深度学习中文第二版 一.人工神经网络 二.TensorFlow v1.6 的新功能是什么? 三.实现前馈神经网络 四.CNN 实战 五.使用 TensorFlow 实现…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
Anaconda3(python3.6)安装tensorflow Anaconda3中安装tensorflow3是非常简单的,仅需通过 pip install tensorflow 测试代码: import tensorflow as tf >>> hello =tf.constant("Hello TensorFlow~") >>> soss=tf.Session() >>> print(soss.run(hello)) b'He…
Tensorflow深度学习之十二:基础图像处理之二 from:https://blog.csdn.net/davincil/article/details/76598474   首先放出原始图像: 1.图像的翻转 import tensorflow as tf import cv2 # 这里定义一个tensorflow读取的图片格式转换为opencv读取的图片格式的函数 # 请注意: # 在tensorflow中,一个像素点的颜色顺序是R,G,B. # 在opencv中,一个像素点的颜色顺序是…
我们知道,TensorFlow是比较流行的深度学习框架,除了看手册文档外,推荐大家看看<Tensorflow深度学习>,共分5方面内容:基础知识.关键模块.算法模型.内核揭秘.生态发展.前两方面由浅入深地介绍了TensorFlow 平台,算法模型方面依托TensorFlow 讲解深度学习模型,内核揭秘方面主要分析C++内核中的通信原理.消息管理机制等,最后从生态发展的角度讲解以TensorFlow 为中心的一套开源大数据分析解决方案. 我们应该学习如何分析并改进深度学习模型的表现,通过与标准算…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 3实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 CNN实例    //2 測试数据    Logger.getRootLogger.setLevel(Level.WARN)    valdata_p…
TensorFlow深度学习基础与应用实战高清视频教程,适合Python C++ C#视觉应用开发者,基于TensorFlow深度学习框架,讲解TensorFlow基础.图像分类.目标检测训练与测试以及后期在C++和C#的应用. 视频目录如下: 你能学到那些内容预览: TensorFlow深度学习基础与应用实战高清视频教程,适合Python C++ C#视觉应用开发者,基于TensorFlow深度学习框架,讲解TensorFlow基础.图像分类.目标检测训练与测试以及后期在C++和C#的应用.…
TensorFlow - 深度学习破解验证码 简介:验证码主要用于防刷,传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别,如果字符之间相互重叠,传统的算法就然并卵了,本文采用cnn对验证码进行整体识别. 主要涉及: 1.captcha库生成验证码 2.如何将验证码识别问题转化为分类问题 3.可以训练自己的验证码识别模型 一.安装 captcha 库 sudo pip install captcha 生成验证码训练数据 所有的模型训练,数据是王道,本文采用 captcha 库生成验…
http://product.dangdang.com/25207334.html 内容 简 介 本书总的指导思想是在掌握深度学习的基本知识和特性的基础上,培养使用TensorFlow进行实际编程以解决图像处理相关问题的能力.全书力求深入浅出,通过通俗易懂的语言和详细的程序分析,介绍TensorFlow的基本用法.高级模型设计和对应的程序编写. 本书共22章,内容包括Python类库的安装和使用.TensorFlow基本数据结构和使用.TensorFlow数据集的创建与读取.人工神经网络.反馈神…
深度学习与传统机器学习的区别 传统机器学习输入的特征为人工提取的特征,例如人的身高.体重等,深度学习则不然,它接收的是基础特征,例如图片像素等,通过多层复杂特征提取获得. 深度学习.人工智能.机器学习的关系 人工智能是一个非常广泛的问题,机器学习是人工智能的一种手段,深度学习是机器学习的一个分支 人工智能>机器学习>深度学习 深度学习两个重要特征 多层和非线性(激活函数) WordNet 是开放环境中的一个较大且有影响力的知识图库,它将15W单词整理成11W个近义词集.并定义了近义词集之间的关…
本文作者 Nikolai Yakovenko 毕业于哥伦比亚大学,目前是 Google 的工程师,致力于构建人工智能系统,专注于语言处理.文本分类.解析与生成. 生成式对抗网络-简称GANs-将成为深度学习的下一个热点,它将改变我们认知世界的方式. 准确来讲,对抗式训练为指导人工智能完成复杂任务提供了一个全新的思路,某种意义上他们(人工智能)将学习如何成为一个专家. 举个对抗式训练的例子,当你试图通过模仿别人完成某项工作时,如果专家都无法分辨这项工作是你完成的还是你的模仿对象完成的,说明你已经完…
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 最近tensorflow团队出了一个model项目,和这个课程无关,但是可以参考 框架: TensorFlow 谷歌出品的基于Pytho…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
JetPack(Jetson SDK)是一个按需的一体化软件包,捆绑了NVIDIA®Jetson嵌入式平台的开发人员软件.JetPack 3.0包括对Jetson TX2 , Jetson TX1和Jetson TK1开发套件的最新L4T BSP软件包的支持. 使用最新的BSP( 用于Jetson TX1的L4T 27.1,用于Jetson TX1的 L4T 24.2.1和用于Jetson TK1的L4T 21.5 )自动刷新您的Jetson开发套件,并安装构建和配置Jetson嵌入式平台应用所…
这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).windows上该环境的搭建 :) 前面三篇博客代码实现均基于该环境(开发或者测试过): [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版 运行环境 1) centOS 7.5 ,不要安装GUI桌面:…
# -*- coding: utf-8 -*- """ Created on Tue Oct 2 15:49:08 2018 @author: zhen """ import tensorflow as tf import numpy as np from sklearn.datasets import fetch_california_housing x = tf.Variable(3, name='x') y = tf.Variable(4,…
我们配置一个tensorflow-gpu版的深度学习环境 windows10 64 python3.5 vs2017(需要C++部分) cuda9.0 cudnn7.1 GeForce GTX1060 1.安装python 我们选择python3.5,直接从官网下载windows10版本的安装就行,可以选择默认安装路径,并添加环境变量. 测试打卡cmd,输入python,输出python的版本信息 则安装成功 2.安装vs2017 3.安装cuda 首先要确保你的电脑上装了一块差不多的显卡 我们…
1.AI:人工智能(Artificial Intelligence) 2.机器学习:(Machine Learning, ML) 3.深度学习:Deep Learning 人工功能的实现是让机器自己学习,其中深度学习就是其中一种学习方法,深度学习就是基于多层神经网络发展而来,可以简单看成深度学习就是多层神经网络.…
一些废话,也可能不是废话.可能对,也可能不对. 机器学习的定义:如果一个程序可以在任务T上,随着经验E的增加,效果P也可以随之增加,则称这个程序可以在经验中学习. “程序”指的是需要用到的机器学习算法,算法的效果除了依赖于训练数据,也依赖于从数据种提取的特征. 也可以说机器学习的是特征和任务之间的关联. 深度学习是机器学习的一个分支,它除了可以学习特征和任务之间的关联之以外,还能自动从简单特征中提取更加复杂的特征. 目前大家所熟知的“深度学习”基本上是深层神经网络的一个代名词. 总的来说,人工智…
本来以为很好安装的一个东西,硬是从晚上九点搞到十二点,安装其实并不难,主要是目前网上的教程有很多方案完全不一样,有根据pip安装的,有根据docker安装的等等,看得我眼花缭乱,好不容易找到一个靠谱点的,各项参数都给略过了,我安装时算是踩了不少坑,现在成功安装,回忆一下过程并整理出来,希望对想入门深度学习框架的朋友有帮助,最起码不要在门槛上被恶心. 为了能够快速的安装组件,请先将镜像源地址改为清华镜像站地址,我在安装时只更改了Anaconda仓库地址:https://mirrors.tuna.t…
Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 deep dive into images and convolutional models Convnet BackGround 人眼在识别图像时,往往从局部到全局 局部与局部之间联系往往不太紧密 我们不需要神经网络中的每个结点都掌握全局的知识,因此可以…
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全连接神经网络 辅助阅读:TensorFlow中文社区教程 - 英文官方教程 代码见:full_connect.py Linear Model 加载lesson 1中的数据集 将Data降维成一维,将label映射为one-hot encoding def reformat(dataset, labe…
全连接层网络结构:神经网络每两层之间的所有结点都是有边相连的. 卷积神经网络:1.输入层 2.卷积层:将神经网络中的每一个小块进行更加深入地分析从而得到抽象程度更高的特征. 3 池化层:可以认为将一张分别率较高的图片转化为分别率较低的图片,通过池化层,可以进一步缩小最后全连接层中节点的个数,从而达到减少整个神经网络中参数的目的. 4全连接层:可以认为图像中的信息已经被抽象成了信息含量更高的特征. 5 softmax层 循环神经网络 过滤器:可以将当前层神经网络上的一个子节点矩阵转化为下一层神经网…