cnn公式推导】的更多相关文章

CNN公式推导 1 前言 在看此blog之前,请确保已经看懂我的前两篇blog[深度学习笔记1(卷积神经网络)]和[BP算法与公式推导].并且已经看过文献[1]的论文[Notes on Convolutional Neural Networks].因为本文就是讲解文献[1]论文前部分公式的推导过程<这里有一个假设,或许公式是错误的,如有好的理解请留言>. 2 CNN公式推导 卷积神经网络参数求解的过程与上次笔记[BP算法与公式推导]类似,但是在形式上还是有变化的.文献[1]的论文直接给出了参数…
  0有全连接网络,为什么还需要RNN 图像处理领域的特殊性,      全连接网络缺点:                              RNN解决办法:      1参数太多                                   |     局部连接      2没有利用图像之间位置的信息      |     权值共享      3网络层数限制                             |     下采样:pooling,只保留重要参数,提高鲁棒性  …
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含多个由卷积层和池化层构成的特征抽取器.在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接.在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核.卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值.共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险.子采样也叫…
The Derivation About CNN and Antoencoder 公式推导 本人用latex写的关于CNN和autoencoder的推导,前向和反向传播的推导都有证明.pdf下载地址The Derivation about CNN and Antoencoder   The Derivation about Convolutional Neural Networks:   The Derivation about Sparse AutoEncoder:…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
不多说,直接上干货! 卷积神经网络(ConvolutionalNeural Networks,简称CNN)提出于20世纪60年代,由Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现. CNN是目前深度学习最大的一个流派,其应用优点在于避免了对图像的复杂前期预处理,可以直接处理原始图像.CNN核心在于“卷积”,传统机器学习中LBP.HOG等特征都可以看作是卷积的一种特殊形式,“卷积”以不同的参数来描述不同的抽象程度特征,更接近于原始图像的“特征抽象”. 如上图所示,利用…
关于卷积神经网络的入门基础知识: https://blog.csdn.net/weixin_42451919/article/details/81381294   卷积神经网络的相关公式推导: https://campoo.cc/cnn/ https://www.cnblogs.com/pinard/p/6494810.html   卷积神经网络知识点超级详细总结文章: https://blog.csdn.net/jiaoyangwm/article/details/80011656#5CNN_…
深度神经网络(DNN,Deep Neural Networks)简介 首先让我们先回想起在之前博客(数据挖掘入门系列教程(七点五)之神经网络介绍)中介绍的神经网络:为了解决M-P模型中无法处理XOR等简单的非线性可分的问题时,我们提出了多层感知机,在输入层和输出层中间添加一层隐含层,这样该网络就能以任意精度逼近任意复杂度的连续函数. 然后在数据挖掘入门系列教程(八)之使用神经网络(基于pybrain)识别数字手写集MNIST博客中,我们使用类似上图的神经网络结构对MINIST数据集进行了训练,最…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习 >文章,记录下利用caffe进行中文验证码图片识别的开发过程.由于这里主要介绍开发和实现过程,CNN理论性的东西这里不作为介绍的重点,遇到相关的概念和术语请自行研究.目前从我们训练出来的模型来看,单字识别率接近96%,所以一个四字验证码的准确率大概80%,效果还不错,完全能满足使用,如…