目录 Logistic回归(鸢尾花分类) 一.导入模块 二.获取数据 三.构建决策边界 四.训练模型 4.1 C参数与权重系数的关系 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ Logistic回归(鸢尾花分类) 一.导入模块 import numpy as np import matplotlib.pyplot as plt from matplot…
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性.可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类. 在三个类别中,其中有一个类别和其他两个类别是线性可分的.另外.在sklearn中已内置了此数据集…
1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logistic回归梯度上升优化算法 def loadDataSet(): dataMat = []; labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataM…
参考<机器学习实战> 利用Logistic回归进行分类的主要思想: 根据现有数据对分类边界线建立回归公式,以此进行分类. 分类借助的Sigmoid函数: Sigmoid函数图: Sigmoid函数的作用: 将所有特征都乘上一个回归系数,然后将所有结果值相加,将这个总和代入Sigmoid函数中,进而得到一个0-1之间的数值.任何大于0.5的数据被分1类,小于0.5分入0类. 综上,Sigmoid的输入可以记为z: 所以向量w即是我们要通过最优化方法找的系数. w向量的求解: 1).梯度上升法(思…
logistic回归 很多时候我们需要基于一些样本数据去预测某个事件是否发生,如预测某事件成功与失败,某人当选总统是否成功等. 这个时候我们希望得到的结果是 bool型的,即 true or false 我们最先想到的是通过最小二乘法求出线性回归模型, 即 Y = WTX  = w0x0 +  w1x1 +  w2x2 + ...  +  wnxn  X表示自变量向量,可以通过随机梯度算法求出上述的系数向量W 此时Y表示线性回归的预测值. 这时存在的问题是: Y表示的是预测值,但是其可正,可负,…
转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是良性(benign)的情况. 给出8个数据如下: 2.假设进行linear regression得到的hypothesis线性方程如上图中粉线所示,则可以确定一个threshold:0.5进行predict y=1, if h(x)>=0.5 y=0, if  h(x)<0.5 即malignan…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# logistic function(sigmo…
Logistic regression 适用于二分分类的算法,用于估计某事物的可能性. logistic分布表达式 $ F(x) = P(X<=x)=\frac{1}{1+e^{\frac{-(x-\mu)}{\gamma}}} $ $ f(x) = F^{'}(x)=\frac{e^{\frac{-(x-\mu)}{\gamma}}}{\gamma(1+e^{\frac{-(x-\mu)}{\gamma}})^{2}} ​$ 函数图像 分布函数属于逻辑斯谛函数,以点 \((\mu,\frac{…
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归.进而可以得到对这些点的拟合直线方程,那么我们根据这个回归方程,怎么进行分类呢?请看下面. 二值型输出分类函数 我们想要的函数应该是: 能接受所有的输入然后预测…