Video Captioning 综述】的更多相关文章

1.Unsupervised learning of video representations using LSTMs 方法:从先前的帧编码预测未来帧序列 相似于Sequence to sequence learning with neural networks论文 方法:使用一个LSTM编码输入文本成固定表示,另一个LSTM解码成不同语言 2.Describing Videos by Exploiting Temporal Structure 该论文发表在iccv2015,是第一篇使用时间关…
Video Analysis 相关领域介绍之Video Captioning(视频to文字描述)http://blog.csdn.net/wzmsltw/article/details/71192385 基于视频图像的信息:包括简单的用CNN(VGGNet, ResNet等)提取图像(spatial)特征,用action recognition的模型(如C3D)提取视频动态(spatial+temporal)特征 先验特征:比如视频的类别,这种特征能提供很强的先验信息 基于文本的特征:此处基于文…
视频描述 顾名思义视频描述是计算机对视频生成一段描述,如图所示,这张图片选取了一段视频的两帧,针对它的描述是"A man is doing stunts on his bike",这对在线的视频的检索等有很大帮助.近几年图像描述的发展也让人们思考对视频生成描述,但不同于图像这种静态的空间信息,视频除了空间信息还包括时序信息,同时还有声音信息,这就表示一段视频比图像包含的信息更多,同时要求提取的特征也就更多,这对生成一段准确的描述是重大的挑战. 一.long-term Recurrent…
Papers Published in 2018 Convolutional Image Captioning - Jyoti Aneja et al., CVPR 2018 - [ Paper Reading ] Learning to Evaluate Image Captioning - Yin Cui et al., CVPR 2018 - [ Paper Reading ] CNN+CNN: Convolutional Decoders for Image Captioning - Q…
题目:SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning 作者: Long Chen等(浙大.新国立.山大) 期刊:CVPR 2017 1       背景 注意力机制已经在自然语言处理和计算机视觉领域取得了很大成功,但是大多数现有的基于注意力的模型只考虑了空间特征,即那些注意模型考虑特征图像中的局部更“重要”的信息,忽略了多通道信息的重要性关系.这篇文章介绍了一种新…
https://github.com/kjw0612/awesome-rnn#natural-language-processing 通常有: (1)Object Recognition (2)Visual Tracking (3)Image Generation (4)Video Analysis NLP: (1)Language Modeling (2)Speech Recognition (3)Machine Translation (4)Conversation Modeling (5)…
Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awesome-php and awesome-computer-vision. Maintainers - Jiwon Kim, Heesoo Myeong, Myungsub Choi, Jung Kwon Lee, Taeksoo Kim We are looking for a maintainer…
之前已经介绍过关于 Recurrent Neural Nnetwork 与 Long Short-Trem Memory 的网络结构与参数求解算法( 递归神经网络(Recurrent Neural Networks,RNN) ,LSTM网络(Long Short-Term Memory )),本文将列举一些 RNN 与 LSTM 的应用, RNN (LSTM)的样本可以是如下形式的:1)输入输出均为序列:2)输入为序列,输出为样本标签:3)输入单个样本,输出为序列.本文将列举一些 RNN(LST…
一.Image Classification(Recognition) lenet: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf alexnet: http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf overfeat: http://arxiv.org/pdf/1312.6229v4.pdf vgg: http://arxiv.org/pdf/1409.1556.pdf googlen…
Weather Recognition plays an important role in our daily lives and many computer vision applications. However, recognizing the weather conditions from a single image remains challenging and has not been studied thoroughly. Generally, most previous wo…
wesome Recurrent Neural Networks A curated list of resources dedicated to recurrent neural networks (closely related todeep learning). Maintainers -Jiwon Kim,Myungsub Choi We have pages for other topics:awesome-deep-vision,awesome-random-forest Table…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
The links below present papers in certain fields. Despite overlaps exist, their emphasis is markedly different. Each paper shows its Content and Comprehension, which is almost extracted from the paper while key points are clear. Generally, each paper…
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first recurrent network for Image Captioning. Within a few dozen minutes of training my first…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
JVM内存模型入门 本文是学习笔记,原文地址在:https://www.bilibili.com/video/av62009886 综述 其实没有太多新东西 JVM主要分为五个区域:栈区.堆区.本地方法栈.程序计数器和方法区(元数据空间). 本地方法栈是存储C++的native方法运行的栈区 程序计数器指向程序运行的位置 方法区主要存储静态的方法和变量,类加载器classloader等等全局的数据 堆区主要存对象,栈区存储对象的引用类型 栈.本地方法栈和程序计数器合起来是线程私有的,堆区和方法区…
CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域:图像与视频处理,图像分类&检测&分割.视觉目标跟踪.视频内容分析.人体姿态估计.模型加速.网络架构搜索(NAS).生成对抗(GAN).光学字符识别(OCR).人脸识别.三维重建等方向. 目录如下: 总目录 图像处理 Deep Image Harmonization via Domain Ve…
CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域:图像与视频处理,图像分类&检测&分割.视觉目标跟踪.视频内容分析.人体姿态估计.模型加速.网络架构搜索(NAS).生成对抗(GAN).光学字符识别(OCR).人脸识别.三维重建等方向. 目录如下: # 总目录 # 图像处理 1. Deep Image Harmonization via Do…
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自己是怎么一步一个逗比的走过的路的,也为了自己思维更有条理.请看客,轻拍,(如果有错,我会立马改正,谢谢大家的指正.==!其实有人看没人看都是个问题.哈哈) 推荐 tornadomeet 的博客园学习资料 http://www.cnblogs.com/tornadomeet/category/4976…
计算机视觉和机器学习领域 近两年部分综述文章,欢迎推荐其他的文章,不定期更新.   [2015]   [1].    E.Sariyanidi, H. Gunes, A. Cavallaro, Automatic Analysisof Facial Affect: A Survey of Registration, Representation, and Recognition,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGE…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
本文转自:http://mp.weixin.qq.com/s?__biz=MzIwMTc4ODE0Mw==&mid=2247484014&idx=1&sn=4a053986f5dc8abb45097fed169465fa&chksm=96e9ddeea19e54f83b717d63029a12715c238de8d6af261fa64af2d9b949480e685b8c283dda&scene=21#wechat_redirect PaperWeekly 第二十二…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, you can read the survey for detail.) CNN+RNN, with attention mechanisms Reinforcement Learning GAN Compositional Architecture: Review Network, Guiding…
作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网格结构数据(如图像,视频等)也是图数据的一种特殊形式,因此图是一个很值得研究的领域. 针对graph的研究可以分为三类: 1.经典的graph算法,如生成树算法,最短路径算法,复杂一点的二分图匹配,费用流问题等等: 2.概率图模型,将条件概率表达为…
视频分割在移动端的算法进展综述 语义分割任务要求给图像上的每一个像素赋予一个带有语义的标签,视频语义分割任务是要求给视频中的每一帧图像上的每一个像素赋予一个带有语义的标签. 视频分割是一项广泛使用的技术,电影电视特效.短视频直播等可以用该技术将场景中的前景从背景中分离出来,通过修改或替换背景,可以将任务设置在现实不存在不存在或不易实现的场景.强化信息的冲击力.传统方式可通过视频图像的手工逐帧抠图方式(摄影在带绿幕的专业摄影棚环境摄制,后期特效完成背景移除切换图 1),比如<复仇者联盟><…
转自:https://zhuanlan.zhihu.com/p/31921944 前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术.广泛被认为是一个图像检索的子问题.给定一个监控行人图像,检索跨设备下的该行人图像. 在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片.当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术.ReID有一个非常…
目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled or Unlabeled Data Set 03 Transforming Samples from Similar Data Sets Discussion and Summary 原文链接:小样本学习与智能前沿 上一篇:A Survey on Few-Shot Learning | Intro…