经过一个多月的努力,终于完成了BP网络,参考的资料为: 1.Training feed-forward networks with the Marquardt algorithm 2.The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems 3.Neural Network Design 4.http://deeplearning.stanford.edu/wiki/index.php/UFL…
代码地址如下:http://www.demodashi.com/demo/12966.html 记得把这几点描述好咯:代码实现过程 + 项目文件结构截图 + 演示效果 1.准备工作 1.1 训练集和测试集准备 先将数据集手动划分成训练集和测试集,并分好类,比如第一类就放在文件夹名为0的文件夹下,第二类就是1,如此类推. 当前程序只能处理10类以下车标,因为当前程序逻辑不支持10以上的数字识别(具体可以仔细看下代码) 所有训练集的图片放在train文件夹中,测试集放在test文件夹下.最终的文件树…
背景 前段时间,用过一些模型如vgg,lexnet,用于做监督学习训练,顺带深入的学习了一下相关模型的结构&原理,对于它的反向传播算法记忆比较深刻, 就自己的理解来描述一下BP网络. 关于BP网络的整体简述 BP神经网络,全程为前馈神经网络,它被用到监督学习中的主体思想是(我们假定我们这里各个层Layer次间采用的是全链接): 通过各个Layer层的激励和权值以及偏置的处理向前传递,最终得到一个预期的值,然后通过标签值和预期的值得到一个残差值,残差值的大小反映了预期值和残差值的偏离程度,然后使用…
基于ReliefF和K-means算法的医学应用实例 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必…
从头推导与实现 BP 网络 回归模型 目标 学习 \(y = 2x\) 模型 单隐层.单节点的 BP 神经网络 策略 Mean Square Error 均方误差 \[ MSE = \frac{1}{2}(\hat{y} - y)^2 \] 模型的目标是 \(\min \frac{1}{2} (\hat{y} - y)^2\) 算法 朴素梯度下降.在每个 epoch 内,使模型对所有的训练数据都误差最小化. 网络结构 Forward Propagation Derivation \[ E = \…
本人弱学校的CS 渣硕一枚,在找工作的时候,发现好多公司都对深度学习有要求,尤其是CNN和RNN,好吧,啥也不说了,拿过来好好看看.以前看习西瓜书的时候神经网络这块就是一个看的很模糊的块,包括台大的视频,上边有AutoEncoder,感觉很乱,所以总和了各种博客,各路大神的知识,总结如果,如有问题,欢迎指出. 1 人工神经网络 1.1 神经元 神经网络由大量的神经元相互连接而成.每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后…
传统神经网络ANN训练算法总结 学习/训练算法分类 神经网络类型的不同,对应了不同类型的训练/学习算法.因而根据神经网络的分类,总结起来,传统神经网络的学习算法也可以主要分为以下三类: 1)前馈型神经网络学习算法-----(前馈型神经网络) 2)反馈型神经网络学习算法------(反馈型神经网络) 3)自组织神经网络学习算法------(自组织神经网络) 以下我们将通过三类典型的神经网络模型分别阐述这三类不同的学习算法其区别与相似点. 虽然针对不同的网络模型,这里产生了三类不同类型的训练算法,但…
最近在学习tf的神经网络算法,十多年没有学习过数学了,本来高中数学的基础,已经彻底还给数学老师了.所以我把各种函数.公式和推导当做黑盒子来用,理解他们能做到什么效果,至于他们是如何做到的,暂时不去深究,最多知道哪个公式的效果会比哪个更适合哪个场合. BP网络应该是最入门级的算法了. #用伪代码描述下大概如此 # 单层BP x = tf.placeholder(tf.float32,[None,256]) y = tf.placeholder(tf.float32,[None,10]) w = t…
本文的主要参考:How the backpropagation algorithm works 下面是BP网络的参数结构示意图 首先定义第l层网络第j个神经元的输出(activation) 为了表示简便,令 则有alj=σ(zlj),其中σ是激活函数 定义网络的cost function,其中的n是训练样本的个数. 下面主要介绍使用反向传播来求取cost function相对于权重wij和偏置项bij的导数. 显然,当输入已知时,cost function只是权值w和偏置项b的函数.这里为了方便…
简介:感知机在1957年就已经提出,可以说是最为古老的分类方法之一了.是很多算法的鼻祖,比如说BP神经网络.虽然在今天看来它的分类模型在很多数时候泛化能力不强,但是它的原理却值得好好研究.先学好感知机算法,对以后学习神经网络,深度学习等会有很大的帮助. 一,感知机模型 (1).超平面的定义 令w1,w2,...wn,v都是实数(R) ,其中至少有一个wi不为零,由所有满足线性方程w1*x1+w2*x2+...+wn*xn=v 的点X=[x1,x2,...xn]组成的集合,称为空间R的超平面. 从…