基于shard-jdbc中间件,实现数据分库分表 Sharding-JDBC简介 Sharding配置示意图 1.水平分割 1.1 水平分库 1.2 水平分表 2.Shard-jdbc中间件 2.1 架构图 2.2 特点 3.项目案例 3.1 项目结构 3.2 数据库配置 3.3 核心代码块 3.3.1 数据源配置文件 3.3.2 数据库分库策略 3.3.3 数据表1分表策略 3.3.4 数据表2分表策略 3.3.5 数据源集成配置 3.3.6 测试代码执行流程 Sharding-JDBC简介…
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框架系列教程四(删除数据) CRL快速开发框架系列教程五(使用缓存) CRL快速开发框架系列教程六(分布式缓存解决方案) CRL快速开发框架系列教程七(使用事务) CRL快速开发框架系列教程八(使用CRL.Package) CRL快速开发框架系列教程九(导入/导出数据) CRL快速开发框架系列教程十(…
一.水平分割 1.水平分库 1).概念: 以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中. 2).结果 每个库的结构都一样:数据都不一样: 所有库的并集是全量数据: 2.水平分表 1).概念 以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中. 2).结果 每个表的结构都一样:数据都不一样: 所有表的并集是全量数据: 二.Shard-jdbc 中间件 1.架构图 2.特点 1).Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零. 2).适用于任何基于…
关于分库分表方案详细介绍 http://blog.csdn.net/bluishglc/article/details/7696085 这里就不作详细描述了 分库分表方案基本脱离不了这个结构,受制于实现的难度,好像没有看到有很方便的实现方案框架 为了解决此问题,在CRL框架基础上作了扩展,使CRL能很好实现此方案,以之前了解到的需求,基本能满足了 本方案拆分结构表示为 会员为业务核心,所有业务围绕会员来进行,所以垂直划分用会员编号作索引,将会员分配到不同的库 会员订单增长量是不固定的,所以需要平…
mysql分库分表 参考: https://www.cnblogs.com/dongruiha/p/6727783.html https://www.cnblogs.com/oldUncle/p/6420301.html https://blog.csdn.net/bluishglc/article/details/6161475 https://blog.csdn.net/bluishglc/article/details/7710738 http://www.mysqlab.net/blog…
上一章已经讲述分库分表算法选型,本章主要讲述分库分表技术选型 文中关联上一章,若下文出现提及其时,可以点击 分库分表算法方案与技术选型(一) 主要讲述 框架比较 sharding-jdbc.zdal 代码实现样例,如需源码可在后文中查看 主键生成策略 可以按需阅读文章 点赞再看,关注公众号:[地藏思维]给大家分享互联网场景设计与架构设计方案 掘金:地藏Kelvin https://juejin.im/user/5d67da8d6fb9a06aff5e85f7 常见框架 除了原生JDBC,网上常见…
书接上文 <一文快速入门分库分表(必修课)>,这篇拖了好长的时间,本来计划在一周前就该写完的,结果家庭内部突然人事调整,领导层进行权利交接,随之宣布我正式当爹,紧接着家庭地位滑落至第三名,还给我分配了一个长期维护任务:带娃.看看我们的靓照,标准的小淑女一枚萌萌哒. 作为Sharding-JDBC 分库分表实战系列的开篇文章,我们在前文中回顾了一下分库分表的基础知识,对分库分表的拆分方式有了一定的了解,下边我们介绍一下 Sharding-JDBC 框架和快速的搭建一个分库分表案例,为讲解后续功能…
今天我们介绍一下 Sharding-JDBC框架和快速的搭建一个分库分表案例,为讲解后续功能点准备好环境. 一.Sharding-JDBC 简介 Sharding-JDBC 最早是当当网内部使用的一款分库分表框架,到2017年的时候才开始对外开源,这几年在大量社区贡献者的不断迭代下,功能也逐渐完善,现已更名为 ShardingSphere,2020年4⽉16⽇正式成为 Apache 软件基⾦会的顶级项⽬. 随着版本的不断更迭 ShardingSphere 的核心功能也变得多元化起来.从最开始 S…
引言 对于一个大型的互联网应用,海量数据的存储和访问成为了系统设计的瓶颈问题,对于系统的稳定性和扩展性造成了极大的问题.通过数据切分来提高网站性能,横向扩展数据层已经成为架构研发人员首选的方式. •水平切分数据库:可以降低单台机器的负载,同时最大限度的降低了宕机造成的损失: •负载均衡策略:可以降低单台机器的访问负载,降低宕机的可能性: •集群方案:解决了数据库宕机带来的单点数据库不能访问的问题: •读写分离策略:最大限度了提高了应用中读取数据的速度和并发量: 问题描述 1.单个表数据量越大,读…
好多年没发博,最近有时间整理些东西,分享给大家. 所有内容都在github项目liuzhibin-cn/my-demo中,基于SpringBoot,演示Dubbo微服务 + Mycat, Sharding-Proxy分库分表 + Seata分布式事务管理 + ZipKin, SkyWalking, PinPoint性能分析链路跟踪APM工具,有详细文档,可以快速运行 演示项目架构 运行演示项目 package.sh为打包脚本: sh package.sh:最简单运行方式,使用单个MySQL数据库…