题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和最大. 首先根据题目意思可以列出下列方程组: //a11x1+a21x2……=d[1] //a12x1+a22x2……=d[2] //... (每个数二进制按列来写,xi为0或1,表示取或不取这个数.) 结果的二进制即为d数组. 由于需要结果最大,而结果最多是d全为1,那么就假设所有d均为1,然后进行高斯消…
题目 题解 突然get到这样路径期望的题目八成是高斯消元 因为路径上的dp往往具有后效性,这就形成了一个方程组 对于本题来说,直接对权值dp很难找到突破口 但是由于异或是位独立的,我们考虑求出每一位的期望 设\(f[i]\)为从节点\(i\)出发到达N的期望值 有\(f[i] = \frac{f[j]}{degree[i]} + \frac{1 - f[k]}{degree[i]} [edge(i,j) = 0,edge(i,k) = 1]\) 因为如果出边权值为0,异或之后值不变,等于\(f[…
传送门 高斯消元还是一如既往的难打……板子都背不来……Kelin大佬太强啦 不知道大佬们是怎么发现可以按位考虑贡献,求出每一位是$1$的概率 然后设$f[u]$表示$u->n$的路径上这一位为$1$的概率,然后设$deg[u]$表示$u$的出度 那么$1-f[u]$就是路径上这一位为$0$的概率 然后瞎推可以得到$$f[u]=\frac1{dg[u]}(\sum_{w(u,v)=0}f[v]+\sum_{w(u,v)=1}1-f[v])$$$$ dg[u]f[u]=\sum_{w(u,v)=0}…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所有xor和为0. 那么自然变成了n个数里面取出一些数,使得xor和为0,求取法数. 首先由xor高斯消元得到一组向量基,但是这些向量基是无法表示0的. 所以要表示0,必须有若干0来表示,所以n-row就是消元结束后0的个数,那么2^(n-row)就是能组成0的种数. 对n==row特判一下. 代码:…
题目链接:http://acm.uestc.edu.cn/#/problem/show/1219 题目大意是给了一张图,然后要求一个点通过路径回到这个点,使得xor和最大. 这是CCPC南阳站的一道题.当时只读了题目发现并不会. 这是一个典型的xor高斯消元. 需要预先dfs出所有的独立回路. 然后线性组合独立回路的xor和,使得ans最大. 最近做过类似的题目,直接粘代码. 代码: 方法一:线性基(O(63n)) #include <iostream> #include <cstdio…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的值都求出来,对于这个规模的n是不可行的. 然后之前有过类似的题,求最大的,有一种方法用到了线性基. 那么线性基能不能表示第k大的呢? 显然,因为线性基可以不重复的表示所有结果.它和原数组是等价的. 对于一个满秩矩阵 100000 010000 001000 000100 000010 000001…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115 题目大意是求一条从1到n的路径,使得路径xor和最大. 可以发现想枚举1到n的所有路径是不行的. 首先有个结论:一个无向连通图G中有且仅有M-N+1个独立回路. 独立回路是指任意一个都不能由其他回路构成. 引用一段数学归纳法证明: “M=N-1时,树,结论成立 设M=K时结论成立,当M=K+1时,任取G中一条边e,G-e中有K-N+1个独立回路,且 任取一个包含e的回路C,显然独立…
275. To xor or not to xor   The sequence of non-negative integers A1, A2, ..., AN is given. You are to find some subsequence Ai 1, Ai 2, ..., Ai k (1 <= i 1 < i 2 < ... < i k<= N) such, that Ai 1 XOR Ai 2 XOR ... XOR Ai k has a maximum valu…
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出m个整理,因子全部为前t个素数.问有多少个子集,乘积是平方数 http://acm.sgu.ru/problem.php?contest=0&problem=200 做法:列方程组,a1,a2,a3……am分别表示bi是否在集合中.对于每一个素因子,建立异或方程组,要求因子个数为偶数,即异或为0. 子集个数便是解的个数,高斯消元后求出变元…
题目链接 题意 给出n个数,问这些数的某些数xor后第k小的是谁. 思路 高斯消元求线性基. 学习地址 把每个数都拆成二进制,然后进行高斯消元,如果这个数字这一位(列)有1,那么让其他数都去异或它,消掉这一列的1,使得最后得到的矩阵某一行如果那一列有1的话,那么其他行是不会有1的(就是线性基). 最后得到一个行数row,代表总共有row个1. 这个证明还没想通,直接用了. 如果得到的row == n的话,代表每一个数都有一个1,那么是取不到0的,这个时候只能得到 2^row - 1 个数,否则其…