https://blog.csdn.net/ChenVast/article/details/81382939 神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectified Linear Unit,修正线性单元) 形式如下: ReLU公式近似推导:: 下面解释上述公式中的softplus,Noisy ReLU. softplus函数与ReLU函数接近,但比较平滑, 同ReLU一样是单边抑制,有宽广的接受域(0,+inf), 但是由于指数运算,对数运算计算量大的原因,…
神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectified Linear Unit,修正线性单元) 形式如下: \[ \begin{equation} f(x)= \begin{cases} 0, & {x\leq 0} \\\\ x, & {x\gt 0} \end{cases} \end{equation} \] ReLU公式近似推导:: \[ \begin{align} f(x) &=\sum_{i=1}^{\inf}\sigma(x-i+0.…
Question? 激活函数是什么? 激活函数有什么用? 激活函数怎么用? 激活函数有哪几种?各自特点及其使用场景? 1.激活函数 1.1激活函数是什么? 激活函数的主要作用是提供网络的非线性建模能力.如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的.因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力. 那么激活函数应该具有什么样的性质呢? 可微性: 当优化方法是基于梯度的时候,这个性质是必须的. 单调性…
今天看到google brain 关于激活函数在2017年提出了一个新的Swish 激活函数. 叫swish,地址:https://arxiv.org/abs/1710.05941v1 pytorch里是这样的: def relu_fn(x): """ Swish activation function """ return x * torch.sigmoid(x) Swish, which is simply f(x) = x ·sigmoid…
“激活函数”能分成两类——“饱和激活函数”和“非饱和激活函数”. sigmoid和tanh是“饱和激活函数”,而ReLU及其变体则是“非饱和激活函数”.使用“非饱和激活函数”的优势在于两点:    1.首先,“非饱和激活函数”能解决所谓的“梯度消失”问题.    2.其次,它能加快收敛速度.    Sigmoid函数需要一个实值输入压缩至[0,1]的范围    σ(x) = 1 / (1 + exp(−x))    tanh函数需要讲一个实值输入压缩至 [-1, 1]的范围    tanh(x)…
“激活函数”能分成两类——“饱和激活函数”和“非饱和激活函数”. sigmoid和tanh是“饱和激活函数”,而ReLU及其变体则是“非饱和激活函数”.使用“非饱和激活函数”的优势在于两点:    1.首先,“非饱和激活函数”能解决所谓的“梯度消失”问题.    2.其次,它能加快收敛速度.    Sigmoid函数需要一个实值输入压缩至[0,1]的范围    σ(x) = 1 / (1 + exp(−x))    tanh函数需要讲一个实值输入压缩至 [-1, 1]的范围    tanh(x)…
import sys import os sys.path.append("/projects/caffe-ssd/python") import caffe net = caffe.NetSpec() net.data, net.label = caffe.layers.Data( name="InputData", source="train_lmdb", backend = caffe.params.Data.LMDB, batch_siz…
BN实现: Batch Normalization学习笔记及其实现: BatchNormalization 层的实现 使用Python实现Batch normalization和卷积层 Batch Normalization原理与使用过程 (推荐) tensorflow 之常见模块conv,bn...实现 根据:Pytorch Batch Normalizatin layer的坑 个人理解:pytorch中affine参数为BN层的参数γ和β是否是可学习的:track_running_stats…
深度学习的激活函数  :sigmoid.tanh.ReLU .Leaky Relu.RReLU.softsign .softplus.GELU 2019-05-06 17:56:43 wamg潇潇 阅读数 652更多 分类专栏: python机器学习 深度学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_29831163/article/details/89887655 [ …
https://blog.csdn.net/ChenVast/article/details/81382795 激活函数是模型整个结构中的非线性扭曲力 神经网络的每层都会有一个激活函数 1.逻辑函数(Sigmoid): 使用范围最广的一类激活函数,具有指数函数形状,它在物理意义上最为接近生物神经元. 其自身的缺陷,最明显的就是饱和性.从函数图可以看到,其两侧导数逐渐趋近于0,杀死梯度. 函数图像: 2.正切函数(Tanh): 非常常见的激活函数.与sigmoid相比,它的输出均值是0,使得其收敛…
RELU 激活函数及其他相关的函数 转载 2016年07月21日 20:51:17 45778 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/50593400 日常 coding 中,我们会很自然的使用一些激活函数,比如:sigmoid.ReLU等等.不过好像忘了…
1.Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x). 2.tensorflow实现 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf input_data = tf.constant( [[0, 10, -10],[-1,2,-3]] , dtype = tf.float32 ) output = tf.nn.relu(input…
激活函数(relu,prelu,elu,+BN)对比on cifar10   可参考上一篇: 激活函数 ReLU.LReLU.PReLU.CReLU.ELU.SELU  的定义和区别   一.理论基础 1.1激活函数 1.2 elu论文(FAST AND ACCURATE DEEP NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS (ELUS)) 1.2.1 摘要     论文中提到,elu函数可以加速训练并且可以提高分类的准确率.它有以下特征: 1)el…
CS231n课程笔记翻译:神经网络笔记1(上) 一.常用激活函数 每个激活函数(或非线性函数)的输入都是一个数字,然后对其进行某种固定的数学操作.下面是在实践中可能遇到的几种激活函数: ———————————————————————————————————————— 左边是Sigmoid非线性函数,将实数压缩到[0,1]之间.右边是tanh函数,将实数压缩到[-1,1]. ———————————————————————————————————————— 1.Sigmoid sigmoid非线性函…
继续回到神经网络章节,上次只对模型进行了简要的介绍,以及做了一个Hello World的练习,这节主要是对当我们结果不好时具体该去做些什么呢?本节就总结一些在深度学习中一些基本的解决问题的办法. 为什么说是"基本的办法"?因为这一部分主要是比较基础的内容,是一些常用的,比较容易理解的,不过多的去讨论各式各样的网络结构,只是介绍这些方法都做了些什么. 对于深度学习的探索后面会再开专题,专门去学习和讨论(突然发现要学的东西真的很多~) 深度学习技巧 0.不要总是让"过拟合&quo…
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化操作,而maxout是对5个通道的特征图在通道的维度上执行最大化操作 这些论文已经有很多前人帮我们解读了,所以不需要自己再费心理解,非常好,所以自己也不需要再写什么多余的解读了,该说的下面的文献都说了. 基础资料 论文翻译:Maxout Networks,这篇博文讲得非常仔细非常清楚,必须仔细看 其…
激活函数是人工神经网络的一个极其重要的特征.它决定一个神经元是否应该被激活,激活代表神经元接收的信息与给定的信息有关. 激活函数对输入信息进行非线性变换. 然后将变换后的输出信息作为输入信息传给下一层神经元. 激活函数的作用 当我们不用激活函数时,权重和偏差只会进行线性变换.线性方程很简单,但解决复杂问题的能力有限.没有激活函数的神经网络实质上只是一个线性回归模型.激活函数对输入进行非线性变换,使其能够学习和执行更复杂的任务.我们希望我们的神经网络能够处理复杂任务,如语言翻译和图像分类等.线性变…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在"深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning"一文中介绍了经典的CNN网络结构模型,这些可以说已经是家喻户晓的网络结构,在那一文结尾,我提到"是时候动一…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51736830 Noisy Activation Functions是ICML 2016年新发表的一篇关于激活函数的论文,其中对以往的激活函数进行了深入的分析,并提出了训练过程中添加噪声的新方法,效果不错,觉得很有意义,目测会在今后的深度学习领域产生比较大的影响,因此将其原论文翻译,并略作注解(计划分两篇博客来写,本文涵盖从摘要到第三节的…
要进一步改进MNIST学习算法,需要对卷积神经网络进行学习和了解 学习材料参见https://www.cnblogs.com/skyfsm/p/6790245.html 卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统网络的一个改进,多了许多神经网络没有的层次. • 数据输入层/ Input layer • 卷积计算层/ CONV layer • ReLU激励层 / ReLU layer • 池化层 / Pooling layer • 全连接层 / FC layer 1.数据…
不用相当的独立功夫,不论在哪个严重的问题上都不能找出真理:谁怕用功夫,谁就无法找到真理. —— 列宁 本文主要介绍损失函数.优化器.反向传播.链式求导法则.激活函数.批归一化. 1 经典损失函数 1.1交叉熵损失函数——分类 (1)熵(Entropy) 变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大.log以2为底! H(x) = E[I(xi)] = E[ log(2,1/p(xi)) ] = -∑p(xi)log(2,p(xi)) (i=1,2,..n) (2)交叉熵(Cr…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
Active Function 激活函数 原创文章,请勿转载哦~!! 觉得有用的话,欢迎一起讨论相互学习~Follow Me Tensorflow提供了多种激活函数,在CNN中,人们主要是用tf.nn.relu,是因为它虽然会带来一些信息损失,但是性能较为突出.开始设计模型时,推荐使用tf.nn.relu,但高级用户也可创建自己的激活函数.评价某个激活函数是否有用时,需要考虑的因素有: 1)该函数应是单调的, 这样输出便会随着输入的增长而增长,从而使利用梯度下降法寻找局部极值点成为可能. 2)该…
tf.nn.relu(features, name = None) 这个函数的作用是计算激活函数 relu,即 max(features, 0).即将矩阵中每行的非最大值置0. import tensorflow as tf a = tf.constant([-1.0, 2.0]) with tf.Session() as sess: b = tf.nn.relu(a) print sess.run(b) 以上程序输出的结果是:[0. 2.]…
激活函数 ReLU.LReLU.PReLU.CReLU.ELU.SELU  的定义和区别 ReLU tensorflow中:tf.nn.relu(features, name=None) LReLU (Leaky-ReLU) 其中ai是固定的.i表示不同的通道对应不同的ai.  tensorflow中:tf.nn.leaky_relu(features, alpha=0.2, name=None) PReLU 其中ai是可以学习的的.如果ai=0,那么 PReLU 退化为ReLU:如果 aiai…
先记录一下一开始学习torch时未曾记录(也未好好弄懂哈)导致又忘记了的tensor.variable.计算图 计算图 计算图直白的来说,就是数学公式(也叫模型)用图表示,这个图即计算图.借用 https://hzzone.io/cs231n/%E7%90%86%E8%A7%A3-PyTorch-%E8%AE%A1%E7%AE%97%E5%9B%BE%E3%80%81Autograd-%E6%9C%BA%E5%88%B6%E5%92%8C%E5%AE%9E%E7%8E%B0%E7%BA%BF%E…
卷积神经网络(CNN) 关注公众号"轻松学编程"了解更多. 一.简介 ​ 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 它包括卷积层(convolutional layer)和池化层(pooling layer). ​ 卷积神经网络包括一维卷积神经网络.二维卷积神经网络以及三维卷积神经网络. ​ 一维卷积神经网络常应用于序列类的数据处理: ​ 二维卷积神…
课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ______________________________________________________________________________________________________________________________________________________________…
作者:程程链接:https://zhuanlan.zhihu.com/p/21432547来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 深度学习大讲堂致力于推送人工智能,深度学习方面的最新技术,产品以及活动.请关注我们的知乎专栏! 一.DL基础理论 本页PPT给出了本节内容概要,我们从MCP神经元模型开始,首先回顾全连接层.卷积层等基础结构单元,Sigmoid等激活函数,Softmax等损失函数,以及感知机.MLP等经典网络结构.接下来,将介绍网络训练方法,包括…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…