Text Style Transfer论文笔记】的更多相关文章

Text Style Transfer主要是指Non-Parallel Data条件下的,具体的paper list见: https://github.com/fuzhenxin/Style-Transfer-in-Text Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer (NAACL 2018) Transforming a sentence to alter a specific at…
Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2016 摘要: 许多经典问题可以看做是 图像转换问题(image transformation tasks).本文所提出的方法来解决的图像转换问题,是以监督训练的方式,训练一个前向传播的网络,利用的就是图像像素级之间的误差.这种方法在测试的时候非常有效,因为仅仅需要一次前向传播即可.但是,像素级的误…
参考 http://blog.csdn.net/u011534057/article/details/55052304 代码 https://github.com/yusuketomoto/chainer-fast-neuralstyle 出处 2016 · european conference on computer vision Motivation 研究Image transfomation的方法.有别于现有的typically train feed-forward convolutio…
Generative Adversarial Text to Image Synthesis ICML 2016  摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的进行无监督学习. Attribute Representation: 是一个非常具有意思的方向.由图像到文本,可以看做是一个识别问题:从文本到图像,则不是那么简单. 因为需要解决这两个小问题: 1. learning a text feature representation that captur…
论文笔记之:Natural Language Object Retrieval 2017-07-10  16:50:43   本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下: 此处,作者强调了一点不同之处: Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects with…
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recognition?) 欢迎来到第四周,即这门课卷积神经网络课程的最后一周.到目前为止,你学了很多卷积神经网络的知识.我这周准备向你展示一些重要的卷积神经网络的特殊应用,我们将从人脸识别开始,之后讲神经风格迁移,你将有机会在编程作业中实现这部分内容,创造自己的艺术作品. 让我们先从人脸识别开始,我这里有一个有意思的演…
原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究主题,机器之心也报道了很多相关的研究.近日,来自浙江大学和亚利桑那州立大学的几位研究者在 arXiv 上发布了一篇「神经风格迁移(Neural Style Transfer)」的概述论文,对当前神经网络风格迁移技术的研究.应用和难题进行了全面的总结.机器之心对该论文的部分内容进行了编译介绍,论文原文…
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model Selection,这篇文章会继续介绍后面的内容. 4. Model Generation 4.2 Hyperparameters optimization 4.2.1 Grid&Random Search 下图很直观地展示了网格搜索(grid search)和随机搜索(random search)的…
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…