The sixth day of Crawler learning】的更多相关文章

爬取我爱竞赛网的大量数据 首先获取每一种比赛信息的分类链接 def get_type_url(url):    web_data = requests.get(web_url)    soup = BeautifulSoup(web_data.text, 'lxml')    types = soup.select("#mn_P1_menu li a")    for type in types:        print(type.get_text())        get_num…
使用mongoDB 下载地址:https://www.mongodb.com/dr/fastdl.mongodb.org/win32/mongodb-win32-x86_64-2008plus-ssl-4.0.9.zip/download 百度链接:https://pan.baidu.com/s/1xhFsENTVvU-tnjK9ODJ7Ag 密码:ctyy mongoDB的安装 https://www.cnblogs.com/iamluoli/p/9254899.html 可视化Robo3T…
爬取58同城 from bs4 import BeautifulSoupimport requestsurl = "https://qd.58.com/diannao/35200617992782x.shtml"web_data = requests.get(url)soup = BeautifulSoup(web_data.text, 'lxml')​title = soup.title.textcost = soup.select("div#basicinfo span.…
连续爬取多页数据 分析每一页url的关联找出联系 例如虎扑 第一页:https://voice.hupu.com/nba/1 第二页:https://voice.hupu.com/nba/2 第三页:https://voice.hupu.com/nba/3...... urls = ["https://voice.hupu.com/nba/{}".format(str(i)) for i in range(1, 30, 1)]print(urls) 这样就获得了30页的url ['ht…
用BeatuifulSoup和Requests爬取猫途鹰网 服务器与本地的交换机制 我们每次浏览网页都是再向网页所在的服务器发送一个Request,然后服务器接受到Request后返回Response给网页. Request 当前Http1.1版本共有get.post.head.put.options.connect.trace.delete共八种发送请求的方式.不过不需要全部记住,目前最常用的为get和post. Response 我们会在Response中得到服务器返回给我们的信息,例如st…
使用BeautifulSoup解析网页 Soup = BeautifulSoup(urlopen(html),'lxml') Soup为汤,html为食材,lxml为菜谱 from bs4 import BeautifulSoupfrom urllib.request import urlopenSoup = BeautifulSoup(urlopen("http://moumangtai.com/"), "lxml") 描述要爬取的东西在哪 选择要爬取的页面进行检…
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur…
In the last chapter we learned that deep neural networks are often much harder to train than shallow neural networks. That's unfortunate, since we have good reason to believe that if we could train deep nets they'd be much more powerful than shallow…
##Linear Regression with One Variable Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price prediction, present the notion of a cost function, and introduce the gradi…
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightforward. In this module, we share best practices for applying machine learning in practice, and discuss the best ways to evaluate performance of the le…