洛谷$P4126\ [AHOI2009]$最小割 图论】的更多相关文章

正解:网络流+$tarjan$ 解题报告: 传送门$QwQ$ $umm$最小割的判定问题$QwQ$,因为并不会做是看的题解才会的,所以也没什么推导过程直接放结论趴$QwQ$ 首先跑个最大流,然后有. 1)可行流($x,y$)的充要条件:满流&残余网络中不存在$x$到$y$的路径 2)必然流($x,y$)的充要条件:满流&残余网络中$ST$分别能到达$xy$ 证明的话都可以用反证法? 对于1,挺显然的还,就如果存在$x$到$y$的路径,说明并没有割开,显然不属于最小割 对于2,我取一边为例,…
题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续增广). 对于任意一条满流边(u,v),(u,v)能够出现在某个最小割集中,当且仅当id[u]!=id[v]: 对于任意一条满流边(u,v),(u,v)必定出现在最小割集中,当且仅当id[u] == id[s]且id[v] == id[t]. 证明: ①将每个SCC缩成一个点,得到的新图就只含有满流…
题目地址:P4126 [AHOI2009]最小割 最小割的可行边与必须边 首先求最大流,那么最小割的可行边与必须边都必须是满流. 可行边:在残量网络中不存在 \(x\) 到 \(y\) 的路径(强连通分量): 必须边:在残量网络中 \(S\) 能到 \(x\) && \(y\) 能到 \(T\) . #include <bits/stdc++.h> using namespace std; const int N = 4e3 + 6, M = 6e4 + 6, inf = 1e…
P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别连通 现在的问题是怎么判断点之间是否连通 我们可以在残量网络上跑tarjan,处理出强连通分量 如果两点同属一个强连通分量,那么它们之间就连通辣 #include<iostream> #include<cstdio> #include<cstring> #include&l…
Description Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum cut of the graph? i.e. how many edges must be removed at least to disconnect the graph into two subgraphs? Input Input co…
题目链接 最小割树模板.具体见:https://www.cnblogs.com/SovietPower/p/9734013.html. ISAP不知为啥T成0分了.. Dinic: //1566ms 2.24MB #include <cstdio> #include <cctype> #include <cstring> #include <algorithm> //#define gc() getchar() #define MAXIN 300000 #d…
洛谷P1345 [USACO5.4]奶牛的电信Telecowmunication[最小割]分析+题解代码 题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流.这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,-,a(c),且a1与a2相连,a2与a3相连,等等,那么电脑a1和a(c)就可以互发电邮. 很不幸,有时候奶牛会不小心踩到电脑上,农夫约翰的车也可能碾过电脑,这台倒霉的电脑就会坏掉.这意味着这台电脑不能再发送电邮了,于是与这…
洛谷 题意: 题意好绕好绕...不想写了. 思路: 首先类似于分数规划做法,二分答案得到到每个点的最小危险度. 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间没有边. 这就是一个最小割,最终的图中不存在\(s\)到\(t\)的路径即可. 代码如下: /* * Author: heyuhhh * Created Time: 2019/10/31 14:47:58 */ #include <bits/stdc++.h> #define MP make_pa…
洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树...这个东西大概就是对于当前点集任意选择两个点\(s,t\)作为源点和汇点,然后求出当前最小割,之后两个集合连边为最小割权值:然后两个集合递归下去处理. 显然最后集合中只会存在一个元素,那么最后形成的就是一颗树. 最小割树有一个性质:对于树上\(u,v\)两点,其路径上的边权最小值即为两点的最小割…
洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^T\)最大. 思路: 化简最后得: \[ \sum_{i=1}^n\sum_{j=1}^nB_{i,j}A_iA_j-\sum_{i=1}^nA_iC_i \] 之后考虑所有的\(A_i\)都为\(1\),现在要将一部分\(A_i\)变为\(0\),最后的损失最小. 因为最后的\(A\)为\(01\…