XEngine:深度学习模型推理优化】的更多相关文章

用户实践系列,将收录 MegEngine 用户在框架实践过程中的心得体会文章,希望能够帮助有同样使用场景的小伙伴,更好地了解和使用 MegEngine ~ 作者:王雷 | 旷视科技 研发工程师 背景 随着人工智能技术的发展及应用领域的不断扩大,算力较弱的移动设备成为模型推理的重要运算载体,优化其推理性能因此成为重要的工程问题.一般认为,让模型运行于 GPU 上会比运行于 CPU 上具有较大的优势,取得可观的性能提升.这通常是真实情况,但是,在工程实践中我们也发现,对于某些模型维度较小的模型,在移…
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和float16低精度数据类型表示.降低的数据带宽减少了推理时间和存储器/存储要求,以及功耗.在适当的量化方案下,可以最小化量化模型的精度下降.因此,量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 通常通过手工微内核,针对不同的工…
CUDA上的量化深度学习模型的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和的低精度数据类型表示float16.降低的数据带宽减少了推理时间和存储器/存储需求,以及功耗.同时,在适当的量化方案下,可以最小化量化模型的精度下降.量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 以前,通常通过手工微内核针对…
目前深度学习应用广发, 其中 AI 推理的在线服务是其中一个重要的可落地的应用场景.本文将为大家介绍使用函数计算部署深度学习 AI 推理的最佳实践,  其中包括使用 FUN 工具一键部署安装第三方依赖.一键部署.本地调试以及压测评估, 全方位展现函数计算的开发敏捷特性.自动弹性伸缩能力.免运维和完善的监控设施. 1.1 DEMO 概述 通过上传一个猫或者狗的照片, 识别出这个照片里面的动物是猫还是狗 DEMO 示例效果入口: http://sz.mofangdegisn.cn DEMO 示例工程…
引言 天猫精灵(TmallGenie)是阿里巴巴人工智能实验室(Alibaba A.I.Labs)于2017年7月5日发布的AI智能语音终端设备.天猫精灵目前是全球销量第三.中国销量第一的智能音箱品牌. 在天猫精灵业务系统中,大量使用了算法模型.如领域分类模型,意图分类模型,槽填充模型,多轮对话模型等.当前天猫精灵后台有上百个正在使用的算法模型. 在模型服务方面,有两个问题非常重要: 首先,为了保证服务能够得到快速响应,模型的 RT 必须尽可能的短. 其次,我们希望在硬件资源一定的情况下能够支持…
概述 Apple的Core ML 3是一个为开发人员和程序员设计的工具,帮助程序员进入人工智能生态 你可以使用Core ML 3为iPhone构建机器学习和深度学习模型 在本文中,我们将为iPhone构建一个全新的应用程序! 介绍 想象一下,在不需要深入了解机器学习的情况下,使用最先进的机器学习模型来构建应用程序.这就是Apple的Core ML 3! 你是Apple的狂热粉丝吗?你用iPhone吗?有没有想过Apple是如何利用机器学习和深度学习来驱动其应用和软件的? 如果你对以上任何一个问题…
本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的  "Optimizing CNN Model Inference on CPUs" 原文链接: https://arxiv.org/abs/1809.02697 翻译:coneypo,working in Intel for IoT 这篇文章介绍了基于 TVM 改进的 NeoCPU 方案,在 CPU 上进行 CNN 模型推理优化: 与之对比是 Intel 的 OpenVINO 版本(2018.5 ,最新的…
本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan Vasist,为我们讲解 DJL(完全由 Java 构建的深度学习平台)系列的第 4 篇. 一.前言 很长时间以来,Java 都是一个很受企业欢迎的编程语言.得益于丰富的生态以及完善维护的包和框架,Java 拥有着庞大的开发者社区.尽管深度学习应用的不断演进和落地,提供给 Java 开发者的框架和库却十分短缺.…
基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用人工智能的速度取决于最大化数据科学家的生产力.NVIDIA每月都会发布优化的NGC容器,为深度学习框架和库提高性能,帮助科学家最大限度地发挥潜力.英伟达持续投资于全数据科学堆栈,包括GPU架构.系统和软件堆栈.这一整体方法为深度学习模型训练提供了最佳性能,正如NVIDIA赢得了提交给MLPerf的所…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…