推导过程存在漏洞+exCRT板子没打熟于是期望得分÷实际得分=∞? 题目描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 \(1\sim n​\) 顺序杀掉 \(n​\) 条巨龙,每条巨龙拥有一个初始的生命值 \(a_i​\).同时每条巨龙拥有恢复能力,当其使用恢复能力时,它的生命值就会每次增加 \(p_i​\),直至生命值非负.只有在攻击结束后且当生命值恰好为 \(0​\) 时它才会死去. 游戏开始时玩家拥有 \(m\) 把攻击力已知的剑,每次面对巨龙时,玩家只…
题目链接: 洛谷 BZOJ LOJ 题目大意:这么长的题面,就饶了我吧emmm 这题第一眼看上去没法列出同余方程组.为什么?好像不知道用哪把剑杀哪条龙…… 仔细一看,要按顺序杀龙,所以获得的剑出现的顺序也是固定的. 那么如果能把所有龙杀死,就能模拟出哪把剑杀那条龙了. (以下设所有除 $n,m$ 外的数的最大值为 $v$) $O(nm)$? 不,发现这里用剑的限制实际上是给出一个上界,来用lower_bound的. 插入也不要太暴力.我们想到什么?手写平衡树multiset! 这一部分复杂度是…
题目链接 LOJ 洛谷 rank前3无压力(话说rank1特判打表有意思么) \(x*atk[i] - y*p[i] = hp[i]\) 对于每条龙可以求一个满足条件的\(x_0\),然后得到其通解\(x[i] = x_0 + p[i]/gcd*k\). 怎么合并所有龙的通解?可以直接写成 \(Ans\equiv x_0(mod\ p[i]/gcd)\),用扩展中国剩余定理合并即可. 所有\(p[i]=1\)时要特判.(为啥呢...反正我知道它不对...) 所有\(p[i]=hp[i]\)时同余…
真是个简单坑题...++ 前置: exgcd,exCRT,STL-multiset 读完题不难发现,攻击每条龙用的剑都是可以确定的,可以用multiset求.攻击最少显然应该对于每一条龙都操作一次,即攻击\(x\)次.设对于第\(i\)条龙,攻击时使用的剑的攻击力为\(us_i\),生命值为\(hp_i\),恢复能力为\(rh_i\),则\(us_ix\equiv hp_i\pmod{rh_i}\).然后仔细阅读数据范围和提示,会发现存在\(hp_i>rh_i\)的情况,此时\(rh_i=1\)…
???看不懂的期望DP 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已经多年没写过代码,连 Spaly 都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验. 本题中我们将考虑游戏的一个简化版模型. 玩家有一套卡牌,…
看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \(a_{\mathrm{id}}\) 修改为 \(x\). QUERY x: 求最小的整数 \(p(0 \leq p < n)\),使得 \(\gcd(a_0, a_1, ..., a_p) \cdot \operatorname{XOR}(a_0, a_1, ..., a_p) = x\). 其中…
树上游戏..二合一? 题目描述 曾经发明了零件组装机的发明家 SHTSC 又公开了他的新发明:聚变反应炉--一种可以产生大量清洁能量的神秘装置. 众所周知,利用核聚变产生的能量有两个难点:一是控制核聚变反应的反应强度,二是使用较少的能量激发聚变反应.而 SHTSC 已经完美解决了第一个问题.一个聚变反应炉由若干个相连的聚变块组成,为了能够使得聚变反应可控,SHTSC 保证任意两个聚能块都可以通过相互之间的链接到达,并且没有一个聚能块可以不重复经过一个链接回到它自己. 但是第二个问题 SHTSC…
洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{*})\)后龙的血量恰好为\(0\).那么根据题意我们可以列出方程: \[atk_i*x\equiv hp_i(mod \ p_i)\] 这个形式是不是很像中国剩余定理的形式:\(x\equiv b_i(mod \ a_i)\). 事实上我们可以直接将这个方程看做一个同余方程,即\[atk_i*x+p…
P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) 求出一个满足条件的\(x_0\),通解是\(x=x_0+k*\text{gcd}(t,p[i])\) 就是\(x \equiv x_0 (\text{mod }\text{gcd}(t,p[i]))\) 然后就有n个这样的式子,用excrt,合并方程 excrt懒得写了 // luogu-judg…
[NOI2018]屠龙勇士(数论,exgcd) 题面 洛谷 题解 考场上半个小时就会做了,一个小时就写完了.. 然后发现没过样例,结果大力调发现中间值爆\(longlong\)了,然后就没管了.. 然后又没切掉...我是真的傻逼... 首先每次选择的刀一定,直接一个\(multiset\)就算出来了. 然后对于每关都单独解一个方程 \(atk[i]x+p[i]y=a[i]\),直接\(exgcd\)求解即可. 但是注意题目方程的含义,所以\(x\gt 0,y\le 0\) 所以要解出来之后还需要…