1104 Sum of Number Segments(20 分) Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3…
本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90486252 1104 Sum of Number Segments (20 分)   Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.…
1104. Sum of Number Segments (20) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CAO, Peng Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we…
Source: PAT A1104 Sum of Number Segments (20 分) Description: Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.…
1104. Sum of Number Segments (20) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CAO, Peng Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we…
Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3,…
题目 Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2,0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3,…
题目链接 https://www.patest.cn/contests/pat-a-practise/1104 思路 最容易想到的一个思路就是 遍历一下所有组合 加一遍 但 时间复杂度 太大 会超时 其实可以发现 每个数字的出现频率是有规律的 比如 4 0.1 0.2 0.3 0.4 这组数据 0.1 4 0.2 6 0.3 6 0.4 4 然后 出现次数 刚好满足 (i + 1) * (n - i) 这个公式 AC代码 #include <cstdio> #include <cstri…
Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0…
Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ with 0 for all i and a​k​​>0. Then N is palindromic if and only if a​i​​=a​k−i​​ for all i. Zero is written 0 and is also palindromic by definition.…