Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; dp[i][j]=max(dp[i][j],dp[i-1][j],dp[i][j-1]); 时空复杂度都为O(n^2^) 对于本题这种做法显然是无法接受的. 我们可以对这个题目进行转化.仔细看题,可以发现a,b两个序列都是1-n的排列. 那么,我们可以利用映射,将a中的数一一映射成为1,2,3,4,5…
传送门 首先那个\(O(n^2)\)的dp都会吧,不会自己找博客或者问别人,或是去做模板题(误) 对以下内容不理解的,强势推荐flash的博客 我们除了原来记录最长上升子序列的\(f_{i,j}\),再记\(g_{i,j}\)表示到\(i,j\)时的最长上升子序列个数,同时设两个字符串为\(A,B\) 若\(A_i=B_j\) ,则有\(f_{i,j}=f_{i-1,j-1}+1,g_{i,j}=g_{i-1,j-1}\) 否则\(f_{i,j}=max(f_{i-1,j},f_{i,j-1})…
题目链接 SovietPower 的题解讲的很清楚.Map或Hash映射后用nlogn求出LIS.这里只给出代码. #include<cstdio> #include<cctype> #include<map> #include<algorithm> using namespace std; map<int,int> vis; inline long long read(){ ,f=; char ch=getchar(); while(!isdi…
首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$ 考虑如何转移数量: 首先,不管$a[i]$是否等于$b[j]$, 都有$h[i][j]+=h[i-1][j]*(f[i][j]==f[i-1][j])+h[i][j-1]*(f[i][j]==f[i][j-1])$ 然后讨论$LIS$中第三种转移: 如果$a[i]==b[j]\ \&\&\ f[i][j]==f[i-1][j-1]+1$,有$h[i][…
\[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为自然数\(1-n\)的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 3 说明 [数据规模] 对于\(50%\)的数据,\(n≤1000\) 对于\(100%\)的数据,\(n≤100000\) 思路…
P1439 [模板]最长公共子序列 题解 1.RE的暴力DP O(n2) 我们设dp[i][j]表示,S串的第i个前缀和T串的第j个前缀的最长公共子序列. ◦          分情况: ◦          如果S[i]==T[j],dp[i][j]=dp[i-1][j-1]+1; ◦          如果S[i]!=T[j],dp[i][j]=max(dp[i-1][j],dp[i][j-1]); ◦          最后答案就是dp[n][m] ◦          对于dp[i][j…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 复制 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 复制 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 题解: 刚开始看题以为是一道简单的LCS,但是一看数据到达的十万就知道不能用常规的LCS,之…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 复制 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 复制 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 ****复杂度为nlogn哦,离散化,然后求最长上升序列 #include<cstdio>…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 复制 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 复制 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 把第一个串和第二个串的位置进行匹配,然后就转化乘找最长上升子序列 #include<iost…
每日一题 day40 打卡 Analysis 因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来 因为最长公共子序列是按位向后比对的,所以a序列每个元素在b序列中的位置如果递增,就说明b中的这个数在a中的这个数整体位置偏后,可以考虑纳入LCS——那么就可以转变成nlogn求用来记录新的位置的book数组中的LIS. #include<iostream> #include<cstdio&…