Dijkstra算法 Dijkstra算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 注意该算法要求图中不存在负权边. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储图的信息. 这个图的Edge数组初始化以后为 我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下. 这个dis数组中存的是最短路的估计值. 通过Dijkstra算法来松弛后,dis存的为从初始点到各点的精确值(最短路径)了. Dijkstra算法实现如下(以HDU1548为例…
适用动态规划的特点 所解决的问题是最优化问题. 所解决的问题具有"最优子结构".可以建立一个递推关系,使得n阶段的问题,可以通过几个k<n阶段的低阶子问题的最优解来求解. 具有"重叠子结构"的特点.即,求解低阶子问题时存在重复计算. 词典法 大家都知道,递归算法一般都存在大量的重复计算,这会造成不必要的时间浪费.词典法,它可以使递归函数避免重复计算.词典法的具体做法是,设计一个数据结构D(多为数组)来保存以前的计算结果.在计算过程中,如果发现要用到的计算结果是…
LFM算法核心思想是通过隐含特征(latent factor)联系用户兴趣和物品,找出潜在的主题和分类.LFM(latent factor model)通过如下公式计算用户u对物品i的兴趣: \[ Preference(u,i) = r_{ui} = {p_u}^T q_i = \sum_{f=1}^F p_{u,k} q_{i,k} \] 定义\(P\)矩阵是user-class矩阵,矩阵值\(P_{ij}\)表示的是user \(i\)对class \(j\)的兴趣度:\(Q\)矩阵式cla…
场感知分解机(Field-aware Factorization Machine ,简称FFM)在FM的基础上进一步改进,在模型中引入类别的概念,即field.将同一个field的特征单独进行one-hot,因此在FFM中,每一维特征都会针对其他特征的每个field,分别学习一个隐变量,该隐变量不仅与特征相关,也与field相关.假设样本的n个特征属于f个field,那么FFM的二次项有nf个隐向量.而在FM模型中,每一维特征的隐向量只有一个.FM可以看做FFM的特例,把所有特征都归属到一个fi…
算法一:分治法 基本概念 1.把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题--直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并. 2.分治策略是对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解. 适用情况 1)该问题的规模缩小到一定的程度就可以容易地解决 2)该问题可以分解为若干个规模较小的…
一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i件物品的重量是w[i],价值是v[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大.其中每种物品只有一件,可以选择放或者不放. 最优子结构性质:对于0-1问题,考虑重量至多W的最值钱的一包东西.如果去掉其中一个物品j,余下的必是除j以外的n-1件物品中,可以带走的重量…
一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息.在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解.依次解决各子问题,最后一个子问题就是初始问题的解. 由于动态规划解决…
Dynamic Programming   Dynamic Programming是五大常用算法策略之一,简称DP,译作中文是"动态规划",可就是这个听起来高大上的翻译坑苦了无数人,因为看完这个算法你可能会觉得和动态规划根本没太大关系,它对"动态"和"规划"都没有太深的体现.   举个最简单的例子去先浅显的理解它,有个大概的雏形,找一个数组中的最大元素,如果只有一个元素,那就是它,再往数组里面加元素,递推关系就是,当你知道当前最大的元素,只需要拿…
动态规划算法(Dynamic Programming,简称 DP) 浅谈动态规划 动态规划算法(Dynamic Programming,简称 DP)似乎是一种很高深莫测的算法,你会在一些面试或算法书籍的高级技巧部分看到相关内容,什么状态转移方程,重叠子问题,最优子结构等高大上的词汇也可能让你望而却步. 而且,当你去看用动态规划解决某个问题的代码时,你会觉得这样解决问题竟然如此巧妙,但却难以理解,你可能惊讶于人家是怎么想到这种解法的. 实际上,动态规划是一种常见的「算法设计技巧」,并没有什么高深莫…
一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如何判断一个问题是不是DP问题呢?适合DP求解的最优化问题通常具有以下两个特征: 最优子结构 如果一个问题的最优解包含其子问题的最优解,我们就称此问题具有最优子结构性质. 以0-1背包问题(给你一个可装载重量为W的背包和N个物品,每个物品有重量和价值两个属性.其中第i个物品的重量为wt[i],价值为v…