不多说,直接上干货! 创建Pair RDD Python语言 pairs = lines.map(lambda x: (x.split(], x))  scala语言 val pairs = lines.map(x => (x.split(), x)) Java语言 PairFunction keyData = new PairFunction() { public Tuple2 call(String x) { ], x); } }; JavaPairRDD pairs = lines.map…
不多说,直接上干货! 什么是Pair RDD (1)包含键值对类型的RDD被称作Pair RDD. (2)Pair RDD通常用来进行聚合计算. (3)Pair RDD通常由普通RDD做ETL转换而来. 关于ETL的知识,请移步 http://www.cnblogs.com/zlslch/category/1008607.html…
不多说,直接上干货! 创建RDD 方式一:从集合创建RDD (1)makeRDD (2)Parallelize 注意:makeRDD可以指定每个分区perferredLocations参数,而parallelize则没有. 方式二:读取外部存储创建RDD Spark与Hadoop完全兼容,所以对Hadoop所支持的文件类型或者数据库类型,Spark同样支持. (1)多文件格式支持: (2)多文件系统支持: 1)本地文件系统 2)S3 3)HDFS (3)数据库 1)JdbcRDD 2)spark…
    为什么会引入RDD? 我们知道,无论是工业界还是学术界,都已经广泛使用高级集群编程模型来处理日益增长的数据,如MapReduce和Dryad.这些系统将分布式编程简化为自动提供位置感知性调度.容错以及负载均衡,使得大量用户能够在商用集群上分析超大数据集.大多数现有的集群计算系统都是基于非循坏的数据流模型.即从稳定的物理存储(如分布式文件系统)中加载记录,记录被传入由一组稳定性操作构成的DAG(Directed Acyclic Graph,有向无环图),然后写回稳定存储.DAG数据流图能够…
不多说,直接上干货!…
不多说,直接上干货! Pair RDD的分区控制 Pair RDD的分区控制 (1) Spark 中所有的键值对RDD 都可以进行分区控制---自定义分区 (2)自定义分区的好处:  1) 避免数据倾斜 2) 控制task并行度 自定义分区方式 class DomainNamePartitioner(numParts: Int) extends Partitioner { override def numPartitions: Int = numParts override def getPar…
不多说,直接上干货! Pair RDD的transformation操作 Pair RDD转换操作1 Pair RDD 可以使用所有标准RDD 上转化操作,还提供了特有的转换操作. Pair RDD转换操作2…
Spark学习之键值对(pair RDD)操作(3) 1. 我们通常从一个RDD中提取某些字段(如代表事件时间.用户ID或者其他标识符的字段),并使用这些字段为pair RDD操作中的键. 2. 创建pair RDD 1)读取本身就是键值对的数据 2)一个普通的RDD通过map()转为pair RDD,传递的函数需要返回键值对. Python中使用第一个单词作为键创建出一个pair RDD pairs = lines.amp(lambda x: (x.split(" ")[0],x))…
不多说,直接上干货! Pair RDD的action操作 所有基础RDD 支持的行动操作也都在pair RDD 上可用…
RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的实现过程. Spark Scala版本的Word Count程序如下: 1: val file = spark.textFile("hdfs://...") 2: val counts = file.flatMap(line => line.split(" "))…