解释 Logistic回归用于寻找最优化算法. 最优化算法可以解决最XX问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大? 我们可以看到最XX问题,有寻找最小(最短时间)和最大等. 解决最小类问题会使用梯度下降法.可以想象为在一个山坡上寻找最陡的下坡路径. 同理,解决最大类问题会使用梯度上升法.可以想象为在一个山坡上寻找最陡的上坡路径. 寻找最优化算法,可以通过试图找到一个阶跃函数(step function),由于阶跃函数只返回…
Logistic回归的一般过程 1.收集数据:采用任意方法收集 2.准备数据:由于需要进行距离计算,因此要求数据类型为数值型.另外,结构化数据格式则最佳 3.分析数据:采用任意方法对数据进行分析 4.训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数 5.测试算法:一旦训练步骤完成,分类将会很快. 6.使用算法:首 先,我们需要输入一些数据,并将其转换成对应的结构化数值:接着,基于训练好的回归系数就可以对这些数值进行简单回归计算,判定它们属于哪个类别:在这之后,我们就可以在输…
本文介绍logistic回归,和改进算法随机logistic回归,及一个病马是否可以治愈的案例.例子中涉及了数据清洗工作,缺失值的处理. 一 引言 1 sigmoid函数,这个非线性函数十分重要,f(z) = 1 / (1 + e^(-z) ), 画图如下:…
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归.进而可以得到对这些点的拟合直线方程,那么我们根据这个回归方程,怎么进行分类呢?请看下面. 二值型输出分类函数 我们想要的函数应该是: 能接受所有的输入然后预测…
第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 Sigmoid 函数 回…
一.有关笔记: 1..吴恩达机器学习笔记(二) —— Logistic回归 2.吴恩达机器学习笔记(十一) —— Large Scale Machine Learning 二.Python源码(不带正则项): # coding:utf-8 ''' Created on Oct 27, 2010 Logistic Regression Working Module @author: Peter ''' from numpy import * def sigmoid(inX): return 1.0…
第五章 Logistic回归 假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归. 为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结果值相加,将这个结果代入Sigmoid函数中,进而得到一个范围在0-1之间的数值.任何大于0.5的数据被分入1类,小于0.5即被归入0类. 1.Sigmoid函数的输入记为 (z),由下面的公式得出: \[ z = {\omega_0}{x_0} + {\omega _1}…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
---------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction ----------------------------------------------…
 一.Logistic回归实现 (一)特征值较少的情况 1. 实验数据 吴恩达<机器学习>第二课时作业提供数据1.判断一个学生能否被一个大学录取,给出的数据集为学生两门课的成绩和是否被录取,通过这些数据来预测一个学生能否被录取. 2. 分类结果评估 横纵轴(特征)为学生两门课成绩,可以在图中清晰地画出决策边界. 3. 代码实现 首先自己实现了梯度下降方法并测试 gradientDesent.m %Logistic gradientDesent function [Theta] = gradie…