新手入门深度学习,选择 TensorFlow 有哪些益处? 佟达:首先,对于新手来说,TensorFlow的环境配置包装得真心非常好.相较之下,安装Caffe要痛苦的多,如果还要再CUDA环境下配合OpenCV使用,对于新手来说,基本上不折腾个几天是很难搞定的. 其次,基于TensorFlow的教学资源非常多,中英文的都有,这对于新手也是非常有帮助的.Google做社区非常有一套,在中国有专门的一群人,会在第一时间把Google的开发者相关的进展翻译成中文. 另外,由于有Google背书,Ten…
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,<零基础入门深度学习>系列文章旨在讲帮助爱编程的你从零基础达到入门级水平.零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章.虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean…
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代次数的增加,学习率应该越来越小,因为迭代次数增加后,得到的解应该比较靠近最优解,所以要缩小步长η,那么有什么公式吗?比如:,但是这样做后,所有参数更新时仍都采用同一个学习率,即学习率不能适应所有的参数更新. 解决方案是:给不同的参数不同的学习率 Adagrad法 假设N元函数f(x),针对一个自变量…
import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorflow.keras import datasetsos.environ['TF_CPP_MIN_LOG_LEVEL']='2' #只打印error的信息(x,y),_=datasets.mnist.load_data()#x: [60k,28,28]#y: [60k]x=tf.convert_to_t…
代码: def forward(self, x): ''' 根据式1-式6进行前向计算 ''' self.times += 1 # 遗忘门 fg = self.calc_gate(x, self.Wfx, self.Wfh, self.bf, self.gate_activator) self.f_list.append(fg) # 输入门 ig = self.calc_gate(x, self.Wix, self.Wih, self.bi, self.gate_activator) self.…
1.回顾logistic回归,下式中a是逻辑回归的输出,y是样本的真值标签值 . (1)现在写出该样本的偏导数流程图.假设这个样本只有两个特征x1和x2, 为了计算z,我们需要输入参数w1.w2和b还有样本的特征值x1和x2,用这个来计算偏导数的计算公式,然后我们可以计算y^就是a,即,最后计算L(a,y),在逻辑回归中,我们要做的就是变换参数w和b的值,来最小化损失函数l(a,y).现在看看怎样向后传播计算偏导数: 要计算损失函数L的导数,首先要向前一步,计算损失函数的导数: 接下来再向后一步…
运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D LR = 0.1 REAL_PARAMS = [1.2, 2.5] INIT_PARAMS = [[5, 4], [5, 1], [2, 4.5]][2] x = np.linspace(-1, 1, 200, dtype=np.float32) # x d…
SIGAI深度学习课程: 本课程全面.系统.深入的讲解深度学习技术.包括深度学习算法的起源与发展历史,自动编码器,受限玻尔兹曼机,卷积神经网络,循环神经网络,生成对抗网络,深度强化学习,以及各种算法的应用.通过精心设计的实践项目,让你深刻理解算法的原理,真实学会算法的使用. 本讲: 讲授机器学习中的基本概念和算法.分类,以及微积分.线性代数.概率论.最优化方法等数学基础知识 机器学习简介: 特征向量 目标函数 机器学习分类: 有监督学习:分类问题(如人脸识别.字符识别.语音识别).回归问题 无监…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 13. 深度学习与自然语言处理 13.1 传统方法的局限 前面已经讲过了隐马尔可夫模型.感知机.条件随机场.朴素贝叶斯模型.支持向量机等传统机器学习模型,同时,为了将这些机器学习模型应用于 NLP,我们掌握了特征模板.TF-IDF.词袋向量等特征提取方法.而这些方法的局限性表现为如下: 数据稀疏 首先,传统的机器学习方法不善于处理数据稀疏问题,这在自然语言处理领域显得尤为突出,语…
手撕机器学习系列文章就暂时更新到此吧,目前已经完成了支持向量机SVM.决策树.KNN.贝叶斯.线性回归.Logistic回归,其他算法还请允许Taoye在这里先赊个账,后期有机会有时间再给大家补上. 更新至此,也是收到了部分读者的好评.虽然不多,但还是非常感谢大家的支持,希望每一位阅读过的读者都能够有所收获. 该系列文章的全部内容都是Taoye纯手打,也是参考了不少书籍以及公开资源,系列总字数在15W左右(含源码),总页数为138,后期会再慢慢填补,更多的技术文章可以来访Taoye的公众号:玩世…