数学知识太差,一点点积累,高手勿喷. 1. 先求出AB向量 a = ( x2-x1, y2-y1 ) 2. 求AB向量的单位方向向量 b = √((x2-x1)^2 + (y2-y1)^2)) a1 = ( (x2-x1)/b, (y2-y1)/b ) 3.求出CA的法向向量(或CB的法向向量) c = ( y0-y1, -(x0-x1) ) 4. 距离 = AC法向向量与BC向量的单位方向向量的数量积 距离d = a1 * c = ( (x2-x1)(y0-y1) - (y2-y1)(x0-x…
A Simple Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2597    Accepted Submission(s): 691 Problem Description There is a n×m board, a chess want to go to the position (n,m) from the pos…
问题: 已知圆上三个点坐标分别为(x1,y1).(x2,y2).(x3,y3) 求圆半径R和圆心坐标(X,Y) X,Y,R为未知数,x1,y1,x2,y2,x3,y3为常数 则由圆公式:(x1-X)²+(y1-Y)²=R²      (1)式(x2-X)²+(y2-Y)²=R²      (2)式(x3-X)²+(y3-Y)²=R²      (3)式(1)-(2),就是左边减左边,右边减右边,得到x1²-2Xx1+X²+(y1²-2Yy1+Y²)-(x2²-2Xx2+X²)-(y2²-2Yy2…
[题目链接]:http://poj.org/problem?id=1981 [题意] 给你n个点(n<=300); 然后给你一个半径R: 让你在平面上找一个半径为R的圆; 这里R=1 使得这个圆覆盖的点的数目最多; [题解] 最少会有一个点; 考虑两个点的情况; 枚举任意两个点在圆上; 考虑最极端的情况; 就是这两个点都在圆的边上;(这样圆心就尽可能地远离它们俩了,以求让这个圆覆盖更多的点); 然后求出这个时候这时的圆心的坐标; 然后看看其他的在这个圆内的点的数目就好; 圆心的话只要求一边的圆心…
福哥答案2020-06-22: 1.遍历法时间复杂度:O(N)最好空间复杂度:O(1)平均空间复杂度:O(sqrt(N))最坏空间复杂度:O(N)[0,N/2]依次遍历,符合条件的就是需要的结果. 2.位运算法最好时间复杂度:O(1)平均时间复杂度:O(sqrt(N))最坏时间复杂度:O(N)最好空间复杂度:O(1)平均空间复杂度:O(sqrt(N))最坏空间复杂度:O(N) 1100100 两数和N=100,已知0010100 异或值M=20,已知1010000 差N-M=80,如果差为负数或…
Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common. Input Input begins with a number T show…
已知空间两点组成的直线求线上某点的Z值,为什么会有这种看起来比较奇怪的求值需求呢?因为真正三维空间的几何计算是比较麻烦的,很多时候需要投影到二维,再反推到三维空间上去. 复习下空间直线方程:已知空间上一点\(M0(x0,y0,z0)\)和方向向量\(S(m,n,p)\),则直线方程的点向式为: \[ \frac{X-x0}{m}=\frac{Y-y0}{n}=\frac{Z-z0}{p} \] 根据该公式可以解决该计算几何问题,具体实现代码如下: #include<iostream> usin…
Squares Time Limit: 3500MS   Memory Limit: 65536K Total Submissions: 18493   Accepted: 7124 Description A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating abou…
已知ip地址为10.130.89.95,其子网掩码为255.255.255.224,求其网络号.子网号和主机号. 要看子网掩码变长在第几节,255.255.255.224是在第四节借了位 把224转换为2进制,windows的计算器科学型能帮你计算.是11100000,借了三位 借了三位,子网个数为2的三次方等于8 即八个子网 其实书上说得挺复杂,我感觉,计算网络号最简单的方法就是 256(这是个固定的数字)除以8(子网个数),等于32 那么,八个子网号就分别是 10.130.89.0 10.1…
题意: 平面上有n个点,求一条直线使得所有点都在直线的同一侧.并求这些点到直线的距离之和的最小值. 分析: 只要直线不穿过凸包,就满足第一个条件.要使距离和最小,那直线一定在凸包的边上.所以求出凸包以后,枚举每个边求出所有点到直线的距离之和得到最小值. 点到直线距离公式为: 因为点都在直线同一侧,所以我们可以把加法“挪”到里面去,最后再求绝对值,所以可以预处理所有点的横坐标之和与纵坐标之和.当然常数C也要记得乘上n倍. 已知两点坐标求过该点直线的方程,这很好求不再赘述,考虑到直线没有斜率的情况,…