Spherical Hashing,球哈希】的更多相关文章

1. Introduction 在传统的LSH.SSH.PCA-ITQ等哈希算法中,本质都是利用超平面对数据点进行划分,但是在D维空间中,至少需要D+1个超平面才能形成一个封闭.紧凑的区域.而球哈希方法利用超球面(hypersphere)对数据进行划分,在任何维度下,只需要1个超球面便可形成一个封闭的区域.利用球哈希方法,每个区域内样本的最大距离的平均值会更小,说明各个区域的样本是更紧凑的.这样更符合邻近的含义,更适合在进行相似搜索时使用. 2. Binary Code Embedding Fu…
二度哈希(rehashing / double hashing) 1.二度哈希的工作原理如下: 有一个包含多个哈希函数(H1……Hn)的集合.当我们要从哈希表中添加或获取元素时,首先使用哈希函数H1.如果导致冲突,则尝试使用H2,一直到Hn.各个哈希函数极其相似,不同的是它们选用的乘法因子.通常,哈希函数Hk的定义如下: Hk(key) = [GetHash(key) + k * (1 + (( (GetHash(key) >> 5) + 1) % (hashsize – 1)))] % ha…
原文地址:http://www.codeproject.com/Articles/56138/Consistent-hashing 基于BSD License What is libconhash libconhash is a consistent hashing library which can be compiled both on Windows and Linux platforms, with the following features: High performance and…
    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用.        一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:   1.平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到…
CVPR14 图像检索papers——图像检索 1.  Triangulation embedding and democratic aggregation for imagesearch (Orals) 2.  Collaborative Hashing (post) 3.  Packing and Padding: Coupled Multi-index for Accurate ImageRetrieval (post) technical report 4.  Bayes Merging…
下面的这份哈希算法小结来源于本周的周报,原本并没有打算要贴出来的,不过,考虑到这些资源属于关注利用哈希算法进行大规模图像搜索的各位看官应该很有用,所以好东西本小子就不私藏了.本资源汇总最主要的收录原则是原作者主页上是否提供了源代码,为了每种方法的资料尽可能完整,本小子会尽可能的除提供源码下载地址外,还会给出PDF文章的链接.项目主页,slide等. 对哈希方法重新进行调研,右图是找到的提供有部分源码的哈希方法,这其中包含了比较经典的哈希方法,比如e2lsh.mih,同时也包含有最近几年一直到13…
原文链接:每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)  一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用.        一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:   1.平衡性(Balance…
1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据的相似性,从数据集中寻找与目标数据最相似的项目,而这种相似性通常会被量化到空间上数据之间的距离,例如欧几里得距离(Euclidean distance),NN认为数据在空间中的距离越近,则数据之间的相似性越高. 当需要查找离目标数据最近的前k个数据项时,就是k最近邻检索(K-NN). 0x2:NN的…
1,对于待存储的海量数据,如何将它们分配到各个机器中去?---数据分片与路由 当数据量很大时,通过改善单机硬件资源的纵向扩充方式来存储数据变得越来越不适用,而通过增加机器数目来获得水平横向扩展的方式则越来越流行.因此,就有个问题,如何将这些海量的数据分配到各个机器中?数据分布到各个机器存储之后,又如何进行查找?这里主要记录一致性Hash算法如何将数据分配到各个机器中去. 2,衡量一致性哈希算法好处的四个标准: ①平衡性:平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空…
值得注意的点 哈希函数的选择 murmur哈希函数 该函数是非加密型哈希,性能高,且发生哈希碰撞的概率据说很低 md5 SHA 可以选择guava包,提供了丰富的哈希函数的API 支持虚拟节点+加权,因为不同的节点可能资源配置不同,加权可以使负载均衡最大化,虚拟节点,可以降低某个节点出现问题后对整个哈希环的冲击 考虑到不同场景用来作哈希的key可能不一样,所以提供一个包装类Node,可以自定义key,且可以自定义权重 安全问题,添加节点和删除节点是需要重建哈希环,此处要考虑并发情况的发生(此处暂…