SIFT :scale invariant feature transform HOG:histogram of oriented gradients 这两种方法都是基于图像中梯度的方向直方图的特征提取方法. 1. SIFT 特征  实现方法: SIFT 特征通常与使用SIFT检测器得到的感兴趣点一起使用.这些感兴趣点与一个特定的方向和尺度(scale)相关联.通常是在对一个图像中的方形区域通过相应的方向和尺度变换后,再计算该区域的SIFT特征. 首先计算梯度方向和幅值(使用Canny边缘算子在…
HOG(Histogram of Oriented Gradients),描述的是图像的局部特征,其命名也暗示了其计算方法,先计算图像中某一区域不同方向上梯度的值,然后累积计算频次,得到直方图,该直方图便可代表该区域了,也即从图像中抽取得到的特征向量,可以作为后续分类器的输入了. 注意,HOG 刻画的是图像的局部特征,对于一副高分辨率图像当然可以直接提取特征,效果并不理想.从信息论的角度说,一幅 640*480 的图像,约有 30 万个像素点,直接对原始图像做 HOG 特征提取的话,按照 360…
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar…
本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/histogram-of-oriented-gradients/ 翻译:coneypo 在这篇文章中,我们将会学习 HOG (Histogram of Oriented Gradients,方向梯度直方图)特征描述子 的详细内容. 我们将学习 HOG 算法是如何实现的,以及在 OpenCv / MATLAB…
之前的文章行人计数.计次提到HOG特征这个概念,这两天看了一下原版的论文,了解了一下HOG特征的原理,并依据自己的理解将这种方法的流程写了下来,假设有不正确的地方欢迎指正. HOG(Histograms of Oriented Gradients)特征的基本思想:The basic idea is that local object appearance and shape can often be characterized rather well by the distribution of…
wiki上的介绍 OpenCV的实现 cv::HOGDescriptor Struct Reference opencv cv::HOGDescriptor 的调用例子 HOGDescriptor hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1, HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS); hog.setSVMDet…
本文大部分内容总结于其他文章 1.介绍 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集.   2.生成过程 1)图像归一化 归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能…
结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測的特征描写叙述器.这项技术是用来计算局部图像梯度的方向信息的统计值.这样的方法跟边缘方向直方图(edge orientation histograms).尺度不变特征变换(scale-invariant feature transform descriptors)以及形状上下文方法( shape c…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检測的特征描写叙述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检測中获得了极大的成功.须要提醒的是,HOG+SVM进行行人检測的方法是法国研究人员Dalal在2005的CVPR上提出的,而现在尽管有非常多行人检測算法不断提出,但基本都是以HOG+SVM的思路为主. (…
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. HOG特征是一种局部区域描述符,它通过计算局部区域上的梯度方向直方图来构成人体特征,能够很好地描述人体的边缘.它对光照变…
1.HOG特点: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检測的特征描写叙述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征. Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检測中获得了极大的成功.须要提醒的是.HOG+SVM进行行人检測的方法是法国研究人员Dalal在2005的CVPR上提出的.而现在尽管有非常多行人检測算法不断提出,但基本都是以HOG+SVM的思路为主.…
整理一下我个人觉得比较好的HOG博文 博文1:OpenCV HOGDescriptor: 参数与图解 http://blog.csdn.NET/raodotcong/article/details/6239431 博文2:opencv源码解析:各个参数讲解 http://www.cnblogs.com/tornadomeet/archive/2012/08/15/2640754.html 博文3:hog特征可视化:matlab 与 C++ http://blog.csdn.Net/u011285…
HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.此方法使用了图像的本身的梯度方向特征,类似于边缘方向直方图方法,SIFT描述子,和上下文形状方法,但其特征在于其在一个网格密集的大小统一的方格单元上计算,而且为了提高精确度使用了重叠的局部对比度归一化的方法. 这篇文章的作者Navneet Dalal和Bi…
一.概述 前面一个系列,我们对车牌识别的相关技术进行了研究,但是车牌识别相对来说还是比较简单的,后续本人会对人脸检测.人脸识别,人脸姿态估计和人眼识别做一定的学习和研究.其中人脸检测相对来说比较简单,譬如Dlib库中直接封装了现成的库函数 frontal_face_detector 供相关人员使用,但是Dlib的运行速率并不是很高,另外于仕琪老师的 libfaceDetection 库具有较高的识别率和相对较快的运行速度,具体可以从github 上获取 https://github.com/Sh…
论文地址:https://arxiv.org/pdf/1311.2524.pdf 翻译请移步: https://www.cnblogs.com/xiaotongtt/p/6691103.html https://blog.csdn.net/v1_vivian/article/details/78599229 背景: 1.近10年以来,以人工经验特征为主导的物体检测任务mAP[物体类别和位置的平均精度]提升缓慢: 2.随着ReLu激励函数.dropout正则化手段和大规模图像样本集ILSVRC的出…
只要有CSS基础的人肯定都知道,我们可以通过transform中的translate,scale,rotate,skew这些方法来控制元素的平移,缩放,旋转,斜切,其实这些方法呢都是为了便于开发者使用的一个函数:可能大家有时候在用的时候也会有困惑,它们能够改变元素运动,这其中的本质是什么呢?今天我们就来说一说transform: matri()这个东西,如果是2D变换,括号里就是6个值得矩阵,如果是3D变换,括号里就是4*4的16值得矩阵,今天我们就先来看看这个2D变换改变参数达到元素变换的原理…
原文地址:http://ghx0x0.github.io/2014/12/30/NDT-match/ By GH 发表于 12月 30 2014 目前三维配准中用的较多的是ICP迭代算法,需要提供一个较好的初值,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优.本文介绍的是另一种比较好的配准算法,NDT配准.这个配准算法耗时稳定,跟初值相关不大,初值误差大时,也能很好的纠正过来. 绪论: 采样: 3d点云数据在离相机近处点云密度大,远处密度小,所以在下采样时采用统一的采样方法还是会保留密度不…
目标检测的图像特征提取之(一)HOG特征 zouxy09@qq.com http://blog.csdn.net/zouxy09 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究…
上一章中使用了一个很重要的概念 — 比例尺( scale ),本节将解说其使用方法. 1. 最大值和最小值 在介绍比例尺( scale )之前,先介绍两个经常和比例尺一起出现的函数,在[第3章]中也出现了. d3.max() d3.min() 这两个函数用于求一个数组中的最大值和最小值,如果是一维数组,使用方法如下: var dataset = [ 30, 20 , 52 , 2 , 11 ]; var result = d3.max( dataset ); 变量 result 中保存的是数组…
概率霍夫变换(Progressive Probabilistic Hough Transform)的原理很简单,如下所述: 1.随机获取边缘图像上的前景点,映射到极坐标系画曲线: 2.当极坐标系里面有交点达到最小投票数,将该点对应x-y坐标系的直线L找出来: 3.搜索边缘图像上前景点,在直线L上的点(且点与点之间距离小于maxLineGap的)连成线段,然后这些点全部删除,并且记录该线段的参数(起始点和终止点),当然线段长度要满足最小长度: 4.重复1. 2. 3.. In "A real-ti…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主…
histogram of oriented gradient(方向梯度直方图)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功. 需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. 不变性:具有光照不变性,不具有尺寸…
如何选择聚集键值的最佳实践是什么?一个好的聚集键值应该有下列属性: 范围小的(Narrow) 静态的(Static) 自增长的(Ever Increasing) 我们来具体看下所有这3个属性,还有在SQL Server里为什么自增长值实际上是不会扩展的. 范围小的(Narrow) 聚集键值应该i越小越好.为什么?因为它要占用空间,聚集键值也在每个非聚集索引的叶子曾作为逻辑指针.如果你的聚集键值很广,你的非聚集索引也会很大.如果你定义了非唯一非聚集索引(Non-Unique Non-Cluster…
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来是对过去四十年中根据不同类别的特征提取方法组织的文献的概述.然后,我们对选择的方法进行更详细的分析,这些方法对研究领域产生了特别重大的影响.最后总结并展望未来的研究方向. 1引言 在本节中,我们将讨论局部(不变)特征的本质.这个词我们的意思是什么?使用局部特征有什么好处?我们可以用它们做什么?理想的…
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的成功能否迁移到PASCAL VOC的目标检测任务上呢?基于这个问题,论文提出了R-CNN. 基本步骤:如下图所示,第一步输入图像.第二步使用生成region proposals的方法(有很多,论文使用的是seletivce search,ImageNet2013检测任务的冠军UVA也使用了该算法)提…
3.三次IOU  2.2次model run  1,一次深度神经网络 rcnn主要作用就是用于物体检测,就是首先通过selective search 选择2000个候选区域,这些区域中有我们需要的所对应的物体的bounding-box,然后对于每一个region proposal 都wrap到固定的大小的scale,227*227(AlexNet Input),对于每一个处理之后的图片,把他都放到CNN上去进行特征提取,得到每个region proposal的feature map,这些特征用固…
CSS3在CSS2.1的基础上新增加了许多属性,这里选择了较常用的一些功能与大家分享,帮助文档中有很详细的描述,可以在本文的示例中获得帮助文档. 一.阴影 1.1.文字阴影 text-shadow<length>①: 第1个长度值用来设置对象的阴影水平偏移值.可以为负值 <length>②: 第2个长度值用来设置对象的阴影垂直偏移值.可以为负值 <length>③: 如果提供了第3个长度值则用来设置对象的阴影模糊值.不允许负值 <color>: 设置对象的阴…
CSS3与页面布局学习总结(六)--CSS3新特性(阴影.动画.渐变.变形.伪元素等)   目录 一.阴影 1.1.文字阴影 1.2.盒子阴影 二.背景 2.1.背景图像尺寸 2.2.背景图像显示的原点 三.伪元素 3.1.before 3.2.after 3.3.清除浮动 四.圆角与边框 4.1.border-radius 圆角 4.2.边框图片border-image 五.变形 transform 5.1.rotate()2D旋转 5.2.设置原点 transform-origin 5.3.…