一.背包问题 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2至Wn,与之相对应的价值为P1,P2至Pn.01背包是背包问题中最简单的问题.01背包的约束条件是给定几种物品,每种物品有且只有一个,并且有权值和体积两个属性.在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况.如果不选择将其放入背包中,则不需要处理.如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况. 二.…
Python基于回溯法解决01背包问题实例 这篇文章主要介绍了Python基于回溯法解决01背包问题,结合实例形式分析了Python回溯法采用深度优先策略搜索解决01背包问题的相关操作技巧,需要的朋友可以参考下 同样的01背包问题,前面采用动态规划的方法,现在用回溯法解决.回溯法采用深度优先策略搜索问题的解,不多说,代码如下: bestV=0 curW=0 curV=0 bestx=None defbacktrack(i):   globalbestV,curW,curV,x,bestx   i…
01 前言 经过小编这几天冒着挂科的风险,日日修炼,终于赶在考试周中又给大家更新了一篇干货文章.关于用变邻域搜索解决0-1背包问题的代码.怎样,大家有没有很感动? 02 什么是0-1背包问题? 0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 w_i,其价值为 v_i . 问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大? 为什么叫0-1背包问题呢?显然,面对每个物品,我们只有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入同一物品多…
二维数组解决01背包问题 题目: 有 N 件物品和一个容量是 V 的背包.每件物品只能使用一次. 第 i 件物品的体积是 vi,价值是 wi. 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大. 输出最大价值. //01背包问题 //[二维数组]求解背包问题 //1.二维数组 #include <iostream> #include <algorithm>//为调用max函数 using namespace std; int n,v1;//n为物品数量,v1…
01背包问题(动态规划)python实现 在01背包问题中,在选择是否要把一个物品加到背包中.必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比較,这样的方式形成的问题导致了很多重叠子问题,使用动态规划来解决.n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每一个物品的重量,v=[6,3,5,4,6]是每一个物品的价值,先把递归的定义写出来: 然后自底向上实现,代码例如以下: def bag(n,c,w,v): res=[[-1 for j in range…
去年的算法课挂了,本学期要重考,最近要在这方面下点功夫啦! 1.多边形游戏-动态规划 问题描述: 多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形.每个顶点被赋予一个整数值, 每条边被赋予一个运算符“+”或“*”.所有边依次用整数从1到n编号. 游戏第1步,将一条边删除. 随后n-1步按以下方式操作: (1)选择一条边E以及由E连接着的2个顶点V1和V2: (2)用一个新的顶点取代边E以及由E连接着的2个顶点V1和V2.将由顶点V1和V2的整数值通过边E上的运算得到的结果赋予新顶…
接上一篇,相同的01背包问题,上一篇採用动态规划的方法,如今用回溯法解决. 回溯法採用深度优先策略搜索问题的解.不多说.代码例如以下: bestV=0 curW=0 curV=0 bestx=None def backtrack(i): global bestV,curW,curV,x,bestx if i>=n: if bestV<curV: bestV=curV bestx=x[:] else: if curW+w[i]<=c: x[i]=True curW+=w[i] curV+=…
回溯法求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 回溯法核心:能进则进,进不了则换,换不了则退.(按照条件深度优先搜索,搜到某一步时,发现不是最优或者达不到目标,则退一步重新选择) 注:理论上,回溯法是在一棵树上进行全局搜索,但是并非每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索. 解决本问题思路:使用0/1序列表示物品的放入情况.将搜索看做一棵二叉树,二叉树的第…
动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最优解组合成大问题的最优解.(将原问题分解为若干子问题,然后自底向上,先求解最小的子问题,把结果存储在表格中,再求解大的子问题时,直接从表格中查询小的子问题的解,避免重复计算,从而让提高算法效率) 解决本问题思路:对于第 i 个物品,放入后可以取得最大的价值,那么,前 i-1 个物品在背包容量为 w-…
问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其中之一.N个物品中每一个物品,都有选择.不选择两种状态.因此,只需要对每一个物品的这两种状态进行遍历. 解是一个长度固定的N元0,1数组. 套用回溯法子集树模板,做起来不要太爽!!! 代码 '''0-1背包问题''' n = 3 # 物品数量 c = 30 # 包的载重量 w = [20, 15,…