题意 题目链接 Sol 这个不用背XD 前置知识: \(f(x) = ln(x), f'(x) = \frac{1}{x}\) \(f(g(x)) = f'(g(x)) g'(x)\) 我们要求的是\(G(x) = F(A(x)), F(x) = ln(x)\) 可以直接对两边求导\(G'(A(x)) = F'(A(x))A'(x) = \frac{A(x)}{A'(x)}\) 发现这个可以算,只要求个逆就行了. 那么就直接求导之后积分回去,复杂度\(O(nlogn)\) #include<bi…
LINK:多项式对数函数 多项式 ln 如题 是一个模板题.刚学会导数 几个知识点 \([f(x)\cdot g(x)]'=f(x)'g(x)+f(x)g(x)',f(g(x))'=f'(g(x))g'(x)\) 求B(x)=ln A(x) 没啥好办法 同时对两边同时求导. \(B'(x)=[lnA(x)]'=ln'(A(x))A'(x)=\frac{A'(x)}{A(x)}\) 然后对于后者分子直接逐项求导分母求逆. 最后就可以求出B'(x)了.然后利用不定积分来对这个东西进行积分求出原多项式…
[Cogs2187]帕秋莉的超级多项式(多项式运算) 题面 Cogs 题解 多项式运算模板题 只提供代码了.. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<map> #include<vec…
多项式总结&多项式板子 三角/反三角是不可能放的(也不可能真香的 多项式乘法(DFT,FFT,NTT,MTT) 背板子 前置知识:泰勒展开 如果\(f(x)\)在\(x_0\)处存在\(n\)阶导,那么 \[f(x)=\sum_{i=0}^{\infty}\frac{f^i(x_0)}{i!}(x-x_0)^i\] 称作\(f(x)\)在\(x_0\)处的泰勒展开. 前置知识:牛顿迭代 有一个\(n-1\)次多项式\(A(x)\),你需要求\(B(x)\)满足\(A(B(x))\equiv 0(…
[luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和 操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z 操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和 输入输出格式 输入格式: 第一行包含4个正整数…
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 \(a\) 的左侧,于是可以用这个方法判断是否弹点. 写的时候注意细节:确定原点时的比较和排序时的比较是不同的,并且排序时不要把原点加入. #include<bits/stdc++.h> using namespace std; #define ll long long #define mp ma…
luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cmath> #include<cstring> #include<iomanip> #include<algorithm> #include<ctime> #include<queue> #inc…
$G(x)=ln(A(x))$ $G'(x)=ln'(A(x))A'(x)=\frac{A'(x)}{A(x)}$     由于求导和积分是互逆的,所以对 $G$ 求积分,即 $G(x)=\int\frac{A'(x)}{A(x)}$ 用求导 + 求逆 + 积分做一下即可 这里给出求导/积分的公式: $\int F(x)=\sum_{i=0}^{n}\frac{a_{i}}{i+1}x^{i+1}$ $d(F(x))=\sum_{i=1}^{n}i\times a_{i}x^{i-1}$    …
继续补全模板. 要求 $$g(x) = ln f(x)$$ 两边求导, $$g'(x) = \frac{f'(x)}{f(x)}$$ 然后左转去把多项式求导和多项式求逆的模板复制过来,就可以计算出$g'(x)$,接下来再对$g'(x)$求不定积分即可. 虽然我也不是很会不定积分,但是这就是求导的逆过程,相当于把求完导之后的函数搞回去. 因为$(a_ix^i)' = ia_ix^{i - 1}$,所以反向算一下就好. 求导的时间复杂度是$O(n)$,积分的时间复杂度是$O(nlogn)$,总时间复…
手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: https://www.luogu.org/problemnew/show/P4725 题目大意: 给定一个\(n\)次多项式\(A(x)\), 求一个\(n\)次多项式\(B(x)\)满足\(B(x)\equiv \ln A(x) (\mod x^n)\) 题解: 神数学模板题-- 数学真奇妙! 前驱…