Normal Equation算法及其简洁,仅需一步即可计算出theta的取值,实现如下: function [theta] = normalEqn(X, y) theta = zeros(size(X, 2), 1); theta = inv(X'*X)*X'*y; end 和梯度下降算法一样,我们预估1650square feet&3 bedrooms的房价: x_e=[1650,3]; x_e=[ones(size(x_e),1) x_e]; price = x_e*theta; outp…
和梯度下降法一样,Normal Equation(正规方程法)算法也是一种线性回归算法(Linear Regression Algorithm).与梯度下降法通过一步步计算来逐步靠近最佳θ值不同,Normal Equation提供了一种直接得到最佳θ值的公式. 我们知道,求解曲线f(x)=ax^2+bx+c极值的问题,其解法是求导数f'(x),并将其置0,求解出极值点.(因为斜率为0,所以是极值). 而放宽到θ系数矩阵,我们同样可以对每个θ求偏导数,从而得到我们想要的J(θ). 利用內积公式:…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 多元线性回归的模型: #-----------…
Normal equation: 一种用来linear regression问题的求解Θ的方法,另一种可以是gradient descent 仅适用于linear regression问题的求解,对其它的问题如classification problem或者feature number太大的情况下(计算量会很大)则不能使用normal equation,而应使用gradient descent来求解. (由求导的过程推导而得) 这种方法是对cost function(J(θ),θ为n+1维向量(…
整理自Andrew Ng的machine learning课程 week2. 目录: 多元线性回归 Multivariates linear regression /MLR Gradient descent for MLR Feature Scaling and Mean Normalization Ensure gradient descent work correctly Features and polynomial regression Normal Equation Vectoriza…
对于multiple features 的问题(设有n个feature),hypothesis 应该改写成 \[ \mathit{h} _{\theta}(x) = \theta_{0} + \theta_{1}\cdot x_{1}+\theta_{2}\cdot x_{2}+\theta_{3}\cdot x_{3}+\dots+\theta_{n}\cdot x_{n} \] 其中: \[ x=\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\\ \vdots \\…
1. 内容概要 Multivariate Linear Regression(多元线性回归) 多元特征 多元变量的梯度下降 特征缩放 Computing Parameters Analytically 正规公式(Normal Equation ) 正规公式非可逆性(Normal Equation Noninvertibility) 2. 重点&难点 1)多元变量的梯度下降 2) 特征缩放 为什么要特征缩放 首先要清楚为什么使用特征缩放.见下面的例子 特征缩放前 由图可以知道特征缩放前,表示面积的…
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta\)呢? 下面我们看看Ng 4-6 中的房价预测例子: 其中\( m = 4, n = 4 \).在机器学习中,线性回归一般都增加额外的一列特征\(x_0 = 1\),其中我们特征矩阵\(X\)和值向量\(y\)分别为: \begin{bmatrix}1 & 2104 & 5 & 1…
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/51030366)和学习率(详见http://blog.csdn.net/u012328159/article/details/51030961).在线性回归中.为了求得參数 %5Ctheta" alt="">的最优值,一般採用梯度下降和本文将要介绍的正规方程(normal equ…
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(features),使问题变成多元线性回归问题. 多元线性回归将通过更多的输入特征,来预测输出.上面有新的Notation(标记)需要掌握. 相比于之前的假设: 我们将多元线性回归的假设修改为: 每一个xi代表一个特征:为了表达方便,令x0=1,可以得到假设的矩阵形式: 其中,x和theta分别表示: 所…