SparkMLlib分类算法之逻辑回归算法】的更多相关文章

SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836) 逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同.逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估. (二),SparkMLlib逻辑回归应用…
SparkMLlib分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836) 逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同.逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估. (二),SparkMLlib逻辑回归应用 1…
分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就是根据肿瘤的大小来判定是良性还是恶性.这就是一个很典型的二分类问题,即输出的结果只有两个值----良性和恶性(通常用数字0和1表示).如图1所示,我们可以做一个直观的判定肿瘤大小大于5,即为恶心肿瘤(输出为1):小于等于5,即为良性肿瘤(输出为0). 2.分类问题的本质 分类问题本质上属于有监督学习…
1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界线(或者边界实体),它具体的表现形式一定程度上说明了算法训练模型的过拟合程度,我们可以通过决策边界来调整算法的超参数. 注解:左边逻辑回归拟合决策边界嘈杂冗余说明过拟合,右边决策边界分层清晰说明拟合度好 3.在逻辑回归中随着算法的复杂度不断地提高,其算法的过拟合也会越来越严重,为了避免这个现象,我们…
Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种.通过历史数据的表现对未来结果发生的概率进行预测.例如,我们可以将购买的概率设置为因变量,将用户的特征属性,例如性别,年龄,注册时间等设置为自变量.根据特征属性预测购买的概率.逻辑回归与回归分析有很多相似之处,在开始介绍逻辑回归之前我们先来看下回归分析. 回归分…
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx f(x_0)+f'(x_0)(x-x_0) \] 二阶泰勒展开: \[ f(x)\approx f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2}(x-x_0)^2 \] 梯度下降法 \[ \begin{align*} &f(x)=f(x^k)+g_k^T*(x-x^…
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:LogisticRegressionWithSGD和LogisticRegressionWithLBFGS,前者基于随机梯度下降,只支持2分类,后者基于LBFGS优化损失函数,支持多分类. 直接上代码: import org.apache.log4j.{Level, Logger} import org.apa…
数据准备:一组股票历史成交数据(股票代码:601106 中国一重),起止日期:2011-01-04至今,其中变量有“开盘”.“最高”.“最低”.“收盘”.“总手”.“金额”.“涨跌”等 UPDATE FactStock SET [涨跌] = N'涨' UPDATE FactStock SET [涨跌] = N'跌' UPDATE FactStock SET [涨跌] = N'持平' SELECT [涨跌] , COUNT(*) AS Cnt FROM FactStock GROUP BY [涨跌…
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_classification def initialize_params(dims): w = np.zeros((dims, 1)) b = 0 return w, b def sigmoid(x): z = 1 / (1 + np.exp(-x)) return z def logisti…
本系列文章用于汇集知识点,查漏补缺,面试找工作之用.数学公式较多,解释较少. 1.假设 2.sigmoid函数: 3.假设的含义: 4.性质: 5.找一个凸损失函数 6.可由最大似然估计推导出 单个样本正确预测的概率为 只是3两个式子合并在一起的表示方法 整个样本空间的概率分布为 取对数展开得, 作为损失函数,并且最小化它,则应改写为5式. 7.求解方法 最原始的方法,梯度下降法 先求导,并带入sigmoid表达式得 之后,参数更新为: 终止条件: 目前指定迭代次数.后续会谈到更多判断收敛和确定…