NOIP复习之1 数学数论】的更多相关文章

noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖师,基本上什么代数问题都可以通过数论推导,其实有的图论也是(数学上). 我们信息中的数论主要是说对整除同余的研究~~~~~~~ ①:唯一分解定理与素数 这个之前我们先要讲素数(定义全部掠过) 素数筛法: #include<iostream> #include<cstdio> #incl…
NOIP复习篇---枚举 ---------------------------------------------------------------------------------------------------------------- 高手的切磋不在于难题,而在于SB算法....NOIP来了,决不能犯SB错误 --------------------------------------------------------------------------------------…
数制转换有两种题型,一般一题,分值1.5分. 题型一:R进制转十进制 解法就是:按权展开,但要注意各个位的权,最低位(最右边)的权是0次方,权值为1. 纯整数的情况: (11010110)2 = 1×27 + 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 0×20  =  (214)10 (2365)8 = 2×83 + 3×82 + 6×81 + 5×80 =  (1269)10 (4BF)16 = 4×162 + B×161 + F×160 =  (12…
前言        离NOIP还有一个星期,匆忙的把整理的算法补充完善,看着当时的整理觉得那时还年少.第二页贴了几张从贴吧里找来的图片,看着就很热血的.当年来学这个竞赛就是为了兴趣,感受计算机之美的.经过时迁,计划赶不上变化,现在尚处于迷茫之中,也很难说当时做的决定是对是错.然而我一直坚信迷茫的时候选择难走的路会看见更好的风景.       这篇文章简单的说了一下NOIP考试中会常用的算法,可能难度掌握的不是太好,有一部分内容不是NOIP考查范围,然而随着难度的增加,看一些更高级的算法也没有坏处…
只是列列一些要复习的,努力复习吧,有种noip退役的赶脚. 一.模拟 (这你也不会?退役吧) 二.DP 1.基础dp 2.区间dp 3.状压dp 4.树形dp 6.概率(期望)dp 7.环形dp 8.方格dp 9.背包问题 a.01背包 b.完全背包 c.多重背包 d.二进制压缩 10.线性dp 三.搜索: 1.dfs 2.bfs 3.枚举 4.启发式搜索(a*) 5.双向搜索 6.记忆化搜索 7.hash判重 8.剪枝 9.二分查找 四.贪心 (视题目而定,没什么好讲的) 五.树 1.生成树…
目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔兰数 常用数学公式 技巧经验 容斥 组合计数 区间筛 博弈 有趣的式子 gcd有关 数论模板库 黑科技 \(long\ long\)相乘取模 子集枚举 高维前缀和 各种线性筛 高级算法 Exgcd Lucas EXCRT BSGS 高斯消元 线性基 裴蜀定理 FFT 拉格朗日插值 NTT FWT 数论 Tag…
整除性(divisible): 引入了代表整除性. m\n (m|n) 表示m整除n.注意这里的整除.表示的是n = km(k为整数). 在整除性这里.m必须是个正数.也许你可以描述n 是 m 的k倍.这种描述中m完全可以是任何数.而在整除性中的表达m整除n,规定了m必须是个正数.而0没有限制. 那么回答以下问题: 1:什么是0的倍数? 2:什么能被0整除? 3:什么能被-1整除? 4:什么能被1整除? 5:2Pi能被Pi整除吗? 6: 2Pi能被2整除吗? 答案分别是: 1:0 2:没有任何数…
一.背包问题 最基础的一类动规问题.相似之处在于给n个物品或无穷多物品或不同种类的物品,每种物品仅仅有一个或若干个,给一个背包装入这些物品,要求在不超出背包容量的范围内,使得获得的价值或占用体积尽可能大,这一类题的动规方程f[i]一般表示剩余容量为i时取得的最大价值或最大占用体积.或者有多维状态,分别表示不同种物品的剩余量 1.Wikioi 1014 装箱问题 题目描写叙述 Description 有一个箱子容量为V(正整数,0<=V<=20000).同一时候有n个物品(0<n<=…
[模板] /*堆优化Dijkstra*/ void dijkstra() { priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > > que;//定义大顶堆 ;i<=n;i++) vis[i]=,dis[i]=INF; dis[]=; que.push(make_pair<ll,,)); while (!que.empty())…
Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only one integer T, indicates the number of tasks. Then, for the next T lines, each line consists of 6 integers, A , B, C, D, P, n. 1≤T≤200≤A,B,C,D≤1091≤P,…