灰度图像--图像分割 Robert算子】的更多相关文章

学习DIP第43天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro…
学习DIP第44天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro…
学习DIP第36天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro…
学习DIP第45天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro…
学习DIP第49天 转载请标明本文出处:*http://blog.csdn.net/tonyshengtan *,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 今天介绍二阶微分算子,二阶微分算子典型的是Laplace算子,LoG可以看成是一个高斯模板的拉普拉斯变换,但是也可以从根源上推导出LoG算子,而后面要介绍的DoG…
学习DIP第46天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 感受下markdown的写博客的感觉,好像在写程序一样,果然是程序员的好工具,不过开头怎么没有空格...一空格就自动变成代码了,这让我情何以堪,好吧,以后的文章开头不…
学习DIP第47天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro 更多详细请访问最新网站www.face2ai.com #开篇废话 依然是废话,这篇主要想对比下Sobel,Prewitt和Scharr算子的平滑能力,由于一阶微分对噪声响应强,进行微分之前进行降噪是非常必要的,这里我们进行的实验是,以lena图作为…
学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 废话开始,今天介绍OTSU算法,本算法比前面给出的算法更能够给出数学上的最佳阈值,不需要任何输入附加参数.与同样不需要输入附加参数的迭代均值和均值阈值来比较…
图像的轮廓提取-Robert算子 图像的边缘:周围像素灰度有阶跃变化或“屋顶”变化的那些像素的集合,边缘广泛存在于物体与背景之间.物体与物体之间,基元与基元之间,是图像分割的重要依据. 物体的边缘是由灰度不连续性形成的,经典的边缘提取方法是考察图像的每个像素在某个领域内灰度的变化,利用边缘邻近一阶或二阶方向倒数变化规律,用简单的方法检测边缘,这种方法称为边缘检测局部算子. public Bitmap Robert(Image image) { int width = image.Width; i…
实现思路: 1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值) 2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值 3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8 注意: 必须对求得的卷积和的值求绝对值:矩阵数据类型进行转化. 完整代码: import cv2 import numpy as np # robert 算子[[-1,-1],[1,1]] def robert_suanzi(img): r, c = img.shape r_sunnzi = [[-1,-1…