spark的RDD如何转换为DataFrame】的更多相关文章

1.Dataset与RDD之间的交互 Spark仅支持两种方式来将RDD转成Dataset.第一种方式是使用反射来推断一个RDD所包含的对象的特定类型.这种基于反射的方式会让代码更加地简洁,当你在编写一个Spark应用程序的时候,如果你已经了解该schema,这种方式就很适用. 第二种方式是通过一个编程接口来创建一个schema,然后将其作用于一个已经存在的RDD,从而创建出一个Dataset,尽管这种方式不太简洁,但它允许你即使在程序运行之前不知道列和类型,你仍然能创建一个Dataset. 2…
依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.1.3</version> </dependency> RDD转化成DataFrame:通过StructType指定schema package com.zy.sparksql import org.apac…
一:准备数据源     在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个student的Bean对象,实现序列化和toString()方法,具体代码如下: import java.io.Serializable; @SuppressWarnings("serial") public class Student implements Serializable {…
#构造case class,利用反射机制隐式转换 scala> import spark.implicits._ scala> val rdd= sc.textFile("input/textdata.txt") scala> case class Person(id:Int,name:String) scala> val df = rdd.map(_.split(",")).map(x=>Person(x(0).toInt,x(1))…
写在前面 主要是加载文件为RDD,再把RDD转换为DataFrame,进而使用DataFrame的API或Sql进行数据的方便操作 简单理解:DataFrame=RDD+Schema 贴代码 package february.sql import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType} import org.apache.spark.sql.{Row, SparkSession}…
一.概述 为什么要将RDD转换为DataFrame? 因为这样的话,我们就可以直接针对HDFS等任何可以构建为RDD的数据,使用Spark SQL进行SQL查询了.这个功能是无比强大的. 想象一下,针对HDFS中的数据,直接就可以使用SQL进行查询. Spark SQL支持两种方式来将RDD转换为DataFrame. 第一种方式 是使用反射来推断包含了特定数据类型的RDD的元数据.这种基于反射的方式,代码比较简洁,当你已经知道你的RDD的元数据时,是一种非常不错的方式. 第二种方式 是通过编程接…
[Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子 from pyspark.sql.types import * schema = StructType( [ StructField("age",IntegerType(),True), StructField("name",StringType(),True), StructField("pcode",StringType(),True)…
不多说,直接上干货! DataFrame的推出,让Spark具备了处理大规模结构化数据的能力,不仅比原有的RDD转化方式更加简单易用,而且获得了更高的计算性能.Spark能够轻松实现从MySQL到DataFrame的转化,并且支持SQL查询. 图 DataFrame与RDD的区别 从上面的图中可以看出DataFrame和RDD的区别. RDD是分布式的 Java对象的集合,比如,RDD[Person]是以Person为类型参数,但是,Person类的内部结构对于RDD而言却是不可知的. Data…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题的第五篇,我们来看看DataFrame. 用过Python做过机器学习的同学对Python当中pandas当中的DataFrame应该不陌生,如果没做过也没有关系,我们简单来介绍一下.DataFrame翻译过来的意思是数据帧,但其实它指的是一种特殊的数据结构,使得数据以类似关系型数据库当中的表一样存储.使用DataFrame我们可以非常方便地对整张表进行一些类似SQL的一些复杂的处理.Apache Spark在升级到…
http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 1.DataFrame是什么?2.如何创建DataFrame?3.如何将普通RDD转变为DataFrame?4.如何使用DataFrame?5.在1.3.0中,提供了哪些完整的数据写入支持API? 自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQ…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…
今天主要介绍一下如何将 Spark dataframe 的数据转成 json 数据.用到的是 scala 提供的 json 处理的 api. 用过 Spark SQL 应该知道,Spark dataframe 本身有提供一个 api 可以供我们将数据转成一个 JsonArray,我们可以在 spark-shell 里头举个栗子来看一下. import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().mast…
[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/raw/master/src/test/resources/episodes.avro 导入到 hdfs 系统: hdfs dfs -put episodes.avro 读入: mydata001=sqlContext.read.format("com.databricks.spark.avro&qu…
一.前述       1.SparkSQL介绍 Hive是Shark的前身,Shark是SparkSQL的前身,SparkSQL产生的根本原因是其完全脱离了Hive的限制. SparkSQL支持查询原生的RDD. RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础. 能够在Scala中写SQL语句.支持简单的SQL语法检查,能够在Scala中写Hive语句访问Hive数据,并将结果取回作为RDD使用.     2.Spark on Hive和Hive on Spa…
本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的集合,对手的所有操作都可以概括为: 创建RDD 转化已有RDD 调用RDD操作进行求值 在这些操作中,Spark会自动将RDD中的数据分发的集群上,并将操作自动化执行. 每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上. Get Started 用户可以: 读取一个外部数据集 或者使用对…
本文目的     最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关的使用经验和原理介绍,作为个人备忘,也希望对读者有用.     为什么选择Spark     原因如下 代码复用:使用Scala高级语言操作Spark,灵活方便,面向对象,函数编程的语言特性可以全部拿来.Scala基本上可以无缝集成java及其相关库.最重要的是,可以封装组件,沉淀工作,提高工作效率…
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的.本文所有示例代码都是使用scala语言编写的. Spark里的计算都是操作RDD进行,那么学习RDD的第一个问题就是如何构建RDD,构建RDD从数据来源角度分为两类:第一类是从内存里直接读取数据,第二类就是从文件系统里读取,当然这里的文件…
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2:RDD的属性: a.一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…
简介 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合. Resilient:弹性,它表示的含义rdd的数据是可以保存在内存中或者是磁盘中. Distributed:它的数据是分布式存储的,后期方便于进行分布式计算. Dataset:它就是一个集合,集合里面可以存放了很多个元素. RDD的属性 1 A list of partitions 一个分区列表,在这里表示一个rd…
本节主要内容: 一.DStream与RDD关系的彻底的研究 二.StreamingRDD的生成彻底研究 Spark Streaming RDD思考三个关键的问题: RDD本身是基本对象,根据一定时间定时产生RDD的对象,随着时间的积累,不对其管理的话会导致内存会溢出,所以在BatchDuration时间内执行完RDD操作后,需对RDD进行管理. 1.DStream生成RDD的过程,DStream到底是怎么生成RDD的? 2.DStream和RDD到底什么关系? 3.运行之后怎么对RDD处理? 所…
08.Spark常用RDD变换 8.1 概述 Spark RDD内部提供了很多变换操作,可以使用对数据的各种处理.同时,针对KV类型的操作,对应的方法封装在PairRDDFunctions trait中,KV类的RDD可以被隐式转换成PairRDDFunctions类型.其中很多的操作,和传统的SQL语句中的操作是对应的,只是底层换成Spark的MR计算. 8.2 常用变换 操作 解释 map 变换,将输入的每个元素进行响应操作,生成新的元素 flatMap 压扁,取出具有可迭代性质的组件中每个…
RDD是分布式内存的一个抽象概念,是一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,能横跨集群所有节点并行计算,是一种基于工作集的应用抽象. RDD底层存储原理:其数据分布存储于多台机器上,事实上,每个RDD的数据都以Block的形式存储于多台机器上,每个Executor会启动一个BlockManagerSlave,并管理一部分Block:而Block的元数据由Driver节点上的BlockManagerMaster保存,BlockManagerSlave生成Block后向Block…
1. RDD 的设计与运行原理 Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务. 在实际应用中,存在许多迭代式算法和交互式数据挖掘工具,这些应用场景的共同之处在于不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入.而 Hadoop 中的 MapReduce 框架都是把中间结果写入到 HDFS 中,带来了大量的数据复制.磁盘 IO 和序列化开销,并且通常…
Spark学习之路Spark之RDD 目录 一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数…
一.Spark RDD容错原理 RDD不同的依赖关系导致Spark对不同的依赖关系有不同的处理方式. 对于宽依赖而言,由于宽依赖实质是指父RDD的一个分区会对应一个子RDD的多个分区,在此情况下出现部分计算结果丢失,单一计算丢失的数据无法达到效果,便采用重新计算该步骤中的所有数据,从而会导致计算数据重复:对于窄依赖而言,由于窄依赖实质是指父RDD的分区最多被一个子RDD使用,在此情况下出现部分计算的错误,由于计算结果的数据只与依赖的父RDD的相关数据有关,所以不需要重新计算所有数据,只重新计算出…
RDD作为弹性分布式数据集,它的弹性具体体现在以下七个方面. 1.自动进行内存和磁盘数据存储的切换 Spark会优先把数据放到内存中,如果内存实在放不下,会放到磁盘里面,不但能计算内存放下的数据,也能计算内存放不下的数据.如果实际数据大于内存,则要考虑数据放置策略和优化算法.当应用程序内存不足时,Spark应用程序将数据自动从内存存储切换到磁盘存储,以保障其高效运行. 2.基于Lineage(血统)的高效容错机制 Lineage是基于Spark RDD的依赖关系来完成的(依赖分为窄依赖和宽依赖两…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…
RDD的概述 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个计算任务处…