AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树.   2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1).   也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树).       对Avl树进行相关的操作最重要的是要保持Avl树的平衡条件.即对Avl树进行相关的操作后,要进行相应的旋转操作来恢复Avl树的平衡条件.       对Avl树的插入和删除都可以用递归实现,文中也给出了插入的非递归版本,关键在于要用…
二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右…
AVL树(平衡二叉树)定义 AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,并且拥有自平衡机制.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树.下面是平衡二叉树和非平衡二叉树对比的例图: 平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1; AVL树的作用 我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(…
例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tree Postorder Traversal 递归栈 递归函数栈的方法很基础,写法也很简单,三种遍历方式之间只需要改变一行代码的位置即可 中序遍历 /** * Definition for a binary tree node. * struct TreeNode { * int val; * Tre…
Problem: 实现二叉树的先序.中序.后序遍历,包括递归方式和非递归方式 Solution: 切记递归规则: 先遍历根节点,然后是左孩子,右孩子, 根据不同的打印位置来确定中序.前序.后续遍历. Code: #pragma once #include <iostream> #include <vector> #include <queue> #include <stack> #include <string> #include <sst…
JAVA 遍历文件夹下的所有文件(递归调用和非递归调用) 1.不使用递归的方法调用. public void traverseFolder1(String path) { int fileNum = 0, folderNum = 0; File file = new File(path); if (file.exists()) { LinkedList<File> list = new LinkedList<File>(); File[] files = file.listFile…
JAVA 遍历文件夹下的所有文件(递归调用和非递归调用) 1.不使用递归的方法调用. public void traverseFolder1(String path) { int fileNum = 0, folderNum = 0; File file = new File(path); if (file.exists()) { LinkedList<File> list = new LinkedList<File>(); File[] files = file.listFile…
前面所讲的二叉搜索树有个比较严重致命的问题就是极端情况下当数据以排序好的顺序创建搜索树此时二叉搜索树将退化为链表结构因此性能也大幅度下降,因此为了解决此问题我们下面要介绍的与二叉搜索树非常类似的结构就诞生了: AVL(Adelson-Velskii and Landis)树,名字取自其发明者 G.M. Adelson-Velsky 和 E.M. Landis的首字母,AVL树是一棵特殊的二叉搜索树它与普通二叉搜索树最主要的区别就是其能够使二叉搜索树维持其左右节点的平衡: AVL树:其任意一个节点…
AVL树的定义 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是.增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An algorithm for the organization of information>中发表了它. 节点的平衡因子是…
AVL树是一种自平衡(Self-balancing)二叉查找树(Binary Search Tree),要求任何一个节点的左子树和右子树的高度之差不能超过1. AVL树的插入操作首先会按照普通二叉查找树的插入操作进行,不同的是在成功插入一个节点后会向上进行回溯,判断路径中的每一个节点左子树和右子树高度之差,如果相差大于1,则进行旋转操作使得树重新达到平衡状态,旋转的本质其实是为当前不平衡的子树选择一个新的根节点,以降低两侧的高度差. 这里以root表示不平衡节点(左右子树高度差大于1),旋转操作…