【cs231n】knn作业笔记】的更多相关文章

KNN作业要求: 1.掌握KNN算法原理 2.实现具体K值的KNN算法 3.实现对K值的交叉验证 1.KNN原理见上一小节 2.实现KNN 过程分两步: 1.计算测试集与训练集的距离 2.通过比较label出现比例的方式,确定选取的最终label 代码分析: cell1 - cell5 对数据的预处理 cell6创建KNN类,初始化类的变量,此处是传递测试数据和训练数据 cell7实现包含两个循环的KNN算法: 通过计算单一的向量与矩阵之间的距离(在之前的cell中,已经将图像转换成列:32*3…
目录 目录结构 zabbix-web.yaml zabbix-backup.yaml zabbix-nfs.yaml zabbix-mysql.yaml zabbix-server.yaml zabbix 应用监控作业笔记 2台web(Nginx+PHP).1台MySQL.1台NFS.1台Rsync(所有的.conf监控项一样,模板不一样) 1.自定义监控项.自定义触发器.自定义动作 2.如何制作模板,模板的导出与导入 ##### 使用Ansible统一 ​ 安装Zabbix-Agent ​ 配…
kNN算法笔记 标签(空格分隔): 机器学习 kNN是什么 kNN算法是k-NearestNeighbor算法,也就是k邻近算法.是监督学习的一种.所谓监督学习就是有训练数据,训练数据有label标好(也就是分类分好的).kNN的思路是,对于需要测试的数据,把它和训练集中的每个数据都进行距离计算,距离最近的前k个结果中,所对应的label出现次数最多的,就是这个测试数据所属的label(类别). kNN一般步骤 按照<machine learning in action>一书中的通用步骤走一遍…
安装anaconda,下载assignment作业代码 作业代码数据集等2018版基于python3.6 下载提取码4put 本课程内容参考: cs231n官方笔记地址 贺完结!CS231n官方笔记授权翻译总集篇发布 CS231n课程笔记翻译:图像分类笔记(上) numpy参考:CS231n课程笔记翻译:Python Numpy教程 以下文字部分转载自: CS231n——图像分类(KNN实现) 课程作业基于python3.6.5对应的anaconda 修改了输入输出 图像分类   目标:已有固定…
本博客内容来自 Stanford University CS231N 2017 Lecture 2 - Image Classification 课程官网:http://cs231n.stanford.edu/syllabus.html 从课程官网可以查询到更详细的信息,查看视频需要FQ上YouTube,如果不能FQ或觉得比较麻烦,也可以从我给出的百度云链接中下载. 课程视频&讲义下载:http://pan.baidu.com/s/1gfu51KJ 问题背景 现在我有一张关于猫的图片,如何让计算…
一.问题描述 网上绝大多数作业参考都是在jupyter下运行的,数据集载入过程一般如下: from cs231n.data_utils import load_CIFAR10 #导入数据集,并打印出数据集相关参数以确定是否加载成功 cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' #数据集地址(获取数据集的脚本) #删除以前可能导入的数据,若之前未导入数据,则直接pass #try...except...为解决异常的语句,参见https://…
可以参考:cs231n assignment1 SVM 完整代码 231n作业   多类 SVM 的损失函数及其梯度计算(最好)https://blog.csdn.net/NODIECANFLY/article/details/82927119  (也不错) 作业部分: 完成结构化SVM的损失梯度的理论计算 完成梯度计算的循环形式的代码 svm_loss_naive 完成向量化梯度计算的代码 svm_loss_vectorized 完成随机梯度下降法的代码,在linear_classifier.…
通过K近邻算法探究numpy向量运算提速 茴香豆的“茴”字有... ... 使用三种计算图片距离的方式实现K近邻算法: 1.最为基础的双循环 2.利用numpy的broadca机制实现单循环 3.利用broadcast和矩阵的数学性质实现无循环 图片被拉伸为一维数组 X_train:(train_num, 一维数组) X:(test_num, 一维数组) 方法验证 import numpy as np a = np.array([[1,1,1],[2,2,2],[3,3,3]]) b = np.…
目录 training Neural Network Activation function sigmoid ReLU Preprocessing Batch Normalization 权重初始化 Weight Initialization 交叉验证 Cross Validation 参数更新方法 Parameter Update SGD SGD+momentum Adagrad RMSprop Adam 改善过拟合 Overfiting 模型集成 Model ensemble 正则化 Reg…
<机器学习实战>知识点笔记目录 K-近邻算法(KNN)思想: 1,计算未知样本与所有已知样本的距离 2,按照距离递增排序,选前K个样本(K<20) 3,针对K个样本统计各个分类的出现次数,取最大次数的分类为未知样本的分类 函数classify0虽然只有短短的几行代码,涉及的知识点却非常多,具体的知识点整理如下: 一.程序清单2-1笔记1,shape函数shape函数是numpy.core.fromnumeric中的函数,它的功能是查看矩阵或者数组的维数.比如:group = array(…