今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己所学的知识也做一个梳理,查漏补缺关于数据挖据.数据分析,可视化,ML,DL,NLP等. 作者:csj更新时间:2017.12.27 email:59888745@qq.com 说明:因内容较多,会不断更新 *学习总结: 2016.10 主要看的书 <Python3-廖雪峰>,<Python核…
0 序言 比赛已经过去一段时间,现在才来写总结似乎有点儿晚,但是挡不住内心发出的强烈呼唤的声音,所以决定静下心来梳理一遍,查缺补漏. 参赛契机: 2017年9月偶然在学校的官方微信推送中看到2017年CCF大数据与计算智能大赛正式启动的信息,仔细阅读了参加规则后就决定找队友一起参赛,试一试自己的能力. 有想法就立即行动,及时把比赛信息分享出去.经过不断宣传.沟通,最终与2位同门成功组队,开启我们的首次竞赛之旅. 成绩/排名: 136/796 1 赛题(引自大赛官网) 基于主题的文本情感分析 以网…
当前,机器学习和数据科学都是很重要和热门的相关学科,需要深入地研究学习才能精通. <机器学习与数据科学基于R的统计学习方法>试图指导读者掌握如何完成涉及机器学习的数据科学项目.为数据科学家提供一些在统计学习领域会用到的工具和技巧,涉及数据连接.数据处理.探索性数据分析.监督机器学习.非监督机器学习和模 型评估.选用的是R统计环境,所有代码示例都是用R语言编写的,涉及众多流行的R包和数据集. 适合数据科学家.数据分析师.软件开发者以及需要了解数据科学和机器学习方法的科研人员阅读参考. 学习参考:…
机器学习PAL数据可视化 本文以统计全表信息为例,介绍如何进行数据可视化. 前提条件 完成数据预处理,详情请参见数据预处理. 操作步骤 登录PAI控制台. 在左侧导航栏,选择模型开发和训练 > Studio-可视化建模. 在PAI可视化建模页面,单击进入机器学习.                                                                                                                     …
机器学习PAL数据预处理 本文介绍如何对原始数据进行数据预处理,得到模型训练集和模型预测集. 前提条件 完成数据准备,详情请参见准备数据. 操作步骤 登录PAI控制台. 在左侧导航栏,选择模型开发和训练 > Studio-可视化建模.在PAI可视化建模页面,单击进入机器学习.                                                                                                               …
版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/82263391 9月2日更:中国大学MOOC课程信息之数据分析可视化二 写在前面 上一篇我的博客:中国大学MOOC课程信息爬取与数据存储于8月24日爬取并存储了中国大学MOOC的各个学科的课程信息.如下: 今天我就来简单做一哈MOOC课程信息的数据分析及可视化. PS:初入茅庐,参考了网上很多大佬的文章,特别感谢! Python数据可视化-seaborn 6…
抓取摩拜单车API数据,并做可视化分析 纵聊天下 百家号|04-19 15:16 关注 警告:此篇文章仅作为学习研究参考用途,请不要用于非法目的. 摩拜是最早进入成都的共享单车,每天我从地铁站下来的时候,在APP中能看到很多单车,但走到那里的时候,才发现车并不在那里.有些车不知道藏到了哪里:有些车或许是在高楼的后面,由于有GPS的误差而找不到了:有些车被放到了小区里面,一墙之隔让骑车人无法获得到车. 那么有没有一个办法通过获得这些单车的数据,来分析这些车是否变成了僵尸车?是否有人故意放到小区里面…
大数据时代的图表可视化利器——highcharts,D3和百度的echarts https://blog.csdn.net/minidrupal/article/details/42153941     还记得阿里巴巴那个令人澎湃激情的双十一吗?还记得淘宝生动形象地把你的的消费历程一一地展示给你看吗?还记得那些酷炫拽的it报告图表吗?在这个大数据越来越盛行的年代,怎样去表达一些用户的关系,人物的关联,甚至是事情的发展,都让我们有更多的表达方式.其中最简单直接,形象明了的就是用图表说明问题了.  …
使用matlab完成高维数据的聚类与可视化 [idx,Centers]=kmeans(qy,) [COEFF,SCORE,latent] = pca(qy); SCORE = SCORE(:,:); mappedX = tsne(SCORE,); c=zeros(,); for i = : c(i,idx(i)) = ; end scatter3(mappedX(:,),mappedX(:,),mappedX(:,),,c,'fill') % 数据qy为211个,48维. % K-means:…
爬虫–scrapy 题目:根据豆瓣读书top250,根据出版社对书籍数量分类,绘制饼图 搭建环境 import scrapy import numpy as np import pandas as pd import matplotlib.pyplot as plt 加载scrapy框架 #terminal 终端实现 cd .. # 跳转到上一层目录 scrapy startproject booktop # 和项目同名的scrapy框架项目 setting配置 ROBOTSTXT_OBEY =…