LightGBM总结】的更多相关文章

现在LightGBM开源了,这里将之前的一个文档发布出来供大家参考,帮助更快理解LightGBM的实现,整体思路应该是类似的. LightGBM优雅,快速,效果好,希望LightGBM越来越好:) LightGBM中GBDT的实现 http://www.docpe.com/Download/10301955391LightGBM%E4%B8%AD%E7%9A%84GBDT%E5%AE%9E.html…
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器(一般倾向于强大而复杂的模型比如完全生长的决策树),然后综合他们的预测结果,通常集成模型的效果会优于基学习器,因为模型的方差有所降低. 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 Bagging:自助采样(有放回的抽样)得到训练子集 Random…
conda install cmake conda install gcc git clone --recursive https://github.com/Microsoft/LightGBM ; cd LightGBM mkdir build ; cd build cmake .. make -j 返回到下载的LightGBM cd LightGBM cd python-packages sudo python setup.py install…
看完一篇介绍文章后,第一个直觉就是这算法已经配得上工业级属性.日前看到微软已经公开了这一算法,而且已经发开python版本,本人觉得等hadoop+Spark这些平台配齐之后,就可以大规模宣传啦~如果R包一发我一定要第一时间学习并更新在本帖下~ 哈哈 看好它是因为支持分布式.GPU运算,而且占用内存小,这几个特制已经足以让她从学界走到工业界,之前的XGboosting更多的使用场景在学术.竞赛.之前我也有写过,感觉局限挺多: R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+…
引 言 如果你是一个机器学习社区的活跃成员,你一定知道 提升机器(Boosting Machine)以及它们的能力.提升机器从AdaBoost发展到目前最流行的XGBoost.XGBoost实际上已经成为赢得在Kaggle比赛中公认的算法.这很简单,因为他极其强大.但是,如果数据量极其的大,XGBoost也需要花费很长的时间去训练. 绝大多数人可能对 Light Gradient Boosting 不熟悉,但是读完本文后你就会对他们很熟悉.一个很自然的问题将进入你的思索:为什么又会出现另一个提升…
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share http://www.360doc.com/content/18/1015/10/60075508_794857307.shtml http://w…
一.LightGBM介绍 LightGBM是一个梯度Boosting框架,使用基于决策树的学习算法.它可以说是分布式的,高效的,有以下优势: 1)更快的训练效率 2)低内存使用 3)更高的准确率 4)支持并行化学习 5)可以处理大规模数据 与常见的机器学习算法对比,速度是非常快的 二.XGboost缺点 在讨论LightGBM时,不可避免的会提到XGboost,关于XGboost可以参考此博文 关于XGboost的不足之处主要有: 1)每次迭代训练时需要读取整个数据集,耗时耗内存: 2)使用Ba…
原文:https://blog.csdn.net/niaolianjiulin/article/details/76584785 前者的含义是轻量级,GBM:梯度上升机. 相较于xgboost: 更快的训练效率 低内存使用 更高的准确率 支持并行化学习 可处理大规模数据 xgboost的缺点: 每轮迭代时,都需要遍历整个训练数据多次.如果把整个训练数据装进内存则会限制训练数据的大小:如果不装进内存,反复地读写训练数据又会消耗非常大的时间. 预排序方法(pre-sorted):首先,空间消耗大.这…
在此之前,调参要么网格调参,要么随机调参,要么肉眼调参.虽然调参到一定程度,进步有限,但仍然很耗精力. 自动调参库hyperopt可用tpe算法自动调参,实测强于随机调参. hyperopt 需要自己写个输入参数,返回模型分数的函数(只能求最小化,如果分数是求最大化的,加个负号),设置参数空间. 本来最优参数fmin函数会自己输出的,但是出了意外,参数会强制转化整数,没办法只好自己动手了. demo如下: import lightgbm as lgb from sklearn.metrics i…
lightGBM LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树.它可以说是分布式的,高效的,有以下优势: 更快的训练效率 低内存使用 更高的准确率 支持并行化学习 可处理大规模数据 与常用的机器学习算法进行比较:速度飞起 已有的xgboost等模型存在一些缺点,如: 每轮迭代时,都需要遍历整个训练数据多次.如果把整个训练数据装进内存则会限制训练数据的大小:如果不装进内存,反复地读写训练数据又会消耗非常大的时间. 预排序方法(pre-sorted):首先,空间消耗…
1.LightGBM简介 LightGBM是一个梯度Boosting框架,使用基于决策树的学习算法.它可以说是分布式的,高效的,有以下优势: 1)更快的训练效率 2)低内存使用 3)更高的准确率 4)支持并行化学习 5)可以处理大规模数据 与常见的机器学习算法对比,速度是非常快的 2.XGboost的缺点 在讨论LightGBM时,不可避免的会提到XGboost,关于XGboost可以参考此博文 关于XGboost的不足之处主要有: 1)每轮迭代时,都需要遍历整个训练数据多次.如果把整个训练数据…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://www.imooc.com/article/43784?block_id=tuijian_wz 鄙人调参新手,最近用lightGBM有…
目录 1.基本知识点简介 2.LightGBM轻量级提升学习方法 2.1 leaf-wise分裂策略 2.2 基于直方图的排序算法 2.3 支持类别特征和高效并行处理 1.基本知识点简介 在集成学习的Boosting提升算法中,有两大家族:第一是AdaBoost提升学习方法,另一种是GBDT梯度提升树. 传统的AdaBoost算法:利用前一轮迭代弱学习器的误差来更新训练集的权重,一轮轮迭代下去. 梯度提升树GBDT:也是通过迭代的算法,使用前向分布算法,但是其弱分类器限定了只能使用CART回归树…
目录 1.基本知识点简介 2.梯度提升树GBDT算法 2.1 思路和原理 2.2 梯度代替残差建立CART回归树 3.XGBoost提升树算法 3.1 XGBoost原理 3.2 XGBoost中损失函数的泰勒展开 3.3 XGBoost中正则化项的选定 3.4 最终的目标损失函数及其最优解的表达形式 4.LightGBM轻量级提升学习方法 4.1 leaf-wise分裂策略 4.2 基于直方图的排序算法 4.3 支持类别特征和高效并行处理 1.基本知识点简介 在集成学习的Boosting提升算…
目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision Tree) 2.4 LightGBM提升学习模型 1.基本知识点介绍 RandomForest.XGBoost.GBDT和LightGBM都属于集成学习. 集成学习通过构建并结合多个分类器来完成学习任务,也称为多分类系统,集成学习的目的是通过结合多个机器学习分类器的预测结果来改善基本学习器的泛化能力和…
前提:安装好git.cmake 1. 安装lightgbm git clone --recursive https://github.com/Microsoft/LightGBM 2. 编译 下载好的lightgbm在 /home/yourself/ 下 cd LightGBM mkdir build cd build cmake .. make -j8 编译过程中可能会卡顿 3. 安装python包 下面将lightgbm装入python包中以供调用 cd ..cd python-packag…
总的认识: LightGBM  > XGBOOST  > GBDT 都是调参数比较麻烦. GBDT分类的最佳调参数的讲解: Gradient Boosting Machine(GBM)调参方法详解 其次 scikit-learn 梯度提升树(GBDT)调参小结 LightGBM学习资料: LightGBM——提升机器算法(图解+理论+安装方法+python代码) 比xgboost强大的LightGBM:调参指南(带贝叶斯优化代码) LightGBM 调参方法(具体操作)…
1. 参数速查 使用num_leaves,因为LightGBM使用的是leaf-wise的算法,因此在调节树的复杂程度时,使用的是num_leaves而不是max_depth. 大致换算关系:num_leaves = 2^(max_depth).它的值的设置应该小于2^(max_depth),否则可能会导致过拟合. 对于非平衡数据集:可以param['is_unbalance']='true’ Bagging参数:bagging_fraction+bagging_freq(必须同时设置).fea…
class lightgbm.LGBMClassifier(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=10, max_bin=255, subsample_for_bin=200000, objective=None, min_split_gain=0.0, min_child_weight=0.001, min_child_samples=20, subsample=1.…
xgb原理: https://www.jianshu.com/p/7467e616f227 https://blog.csdn.net/a819825294/article/details/51206410 参数解释: https://www.jianshu.com/p/1100e333fcab GBDT原理 https://blog.csdn.net/xsqlx/article/details/51330627 解释得很详细的一个博客,同时与svm,lr进行比较,讲解了GBDT用于分类时的原理…
原论文: http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf lightgbm原理: gbdt困点: gbdt是受欢迎的机器学习算法,当特征维度很高或数据量很大时,有效性和可拓展性没法满足.lightgbm提出GOSS(Gradient-based One-Side Sampling)和EFB(Exclusive Feature Bundling)进行改进…
效率和内存上的提升 1) 在训练决策树计算切分点的增益时,xgboost采用预排序,即需要对每个样本的切分位置都要计算一遍,所以时间复杂度是O(#data). 而LightGBM则是将样本离散化为直方图,直方图算法的基本思想是先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图.在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点) Histogram 算法的优缺点: Histogr…
LightGBM 可以使用一个 pairs 的 list 或一个字典来设置参数: 1.Booster提升器的参数: param={'num_class':33, 'boosting_type':'gbdt', 'max_depth':3, 'metric': {'multi_logloss'}, 'learning_rate':0.01} 2.可以制定多eval指标: param['metric'] = ['auc', 'binary_logloss'] 模型的训练:需要一个params参数和训…
这四种都是非常流行的集成学习(Ensemble Learning)方式,在本文简单总结一下它们的原理和使用方法. Random Forest(随机森林): 随机森林属于Bagging,也就是有放回抽样,多数表决或简单平均.Bagging之间的基学习器是并列生成的.RF就是以决策树为基学习器的Bagging,进一步在决策树的训练过程中引入了随机特征选择,这会使单棵树的偏差增加,但总体而言有利于集成.RF的每个基学习器只使用了训练集中约63.2%的样本,剩下的样本可以用作袋外估计. 一般使用的是sk…
gridsearchcv: https://www.cnblogs.com/bjwu/p/9307344.html gridsearchcv+lightgbm cv函数调参: https://www.twblogs.net/a/5be215942b717720b51cce01/zh-cn 使用gridsearchcv调参时,某一轮下已经确定的参数(比如步长为1时已经确定max_depth),之后就不用调了. 为了节省时间,每次选择的参数搜索范围不要太大(不是指步长) .建议多调几轮,但每轮搜索每…
尊重原创 来源: https://blog.csdn.net/a790209714/article/details/78086867   XGBoost的四大改进: ①改进残差函数 不用Gini作为残差,用二阶泰勒展开+树的复杂度(正则项) 带来如下好处: 1.可以控制树的复杂度 2.带有关于梯度的更多信息,获得了二阶导数 3.可以用线性分类器   ②采用预排序 因为每一次迭代中,都要生成一个决策树,而这个决策树是残差的决策树,所以传统的不能并行 但是陈天奇注意到,每次建立决策树,在分裂节点的时…
俄罗斯搜索巨头 Yandex 昨日宣布开源 CatBoost ,这是一种支持类别特征,基于梯度提升决策树的机器学习方法. CatBoost 是由 Yandex 的研究人员和工程师开发的,是 MatrixNet 算法的继承者,在公司内部广泛使用,用于排列任务.预测和提出建议.Yandex 称其是通用的,可应用于广泛的领域和各种各样的问题. 笔者相关文章: R+工业级GBDT︱微软开源 的LightGBM(R包已经开放) R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgbo…
1.下载whl lightgbm的whl下载地址 2.输入命令 pip install lightgbm-2.0.3-py2.py3-one-win_am64.whl 3.验证是否成功 import lightgbm as lgb…
# lightgbm和xgboost对比: 模型精度:lightgbm≈xgboost 收敛速度:lightgbm>xgboost #…
github地址 #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Mar 31 21:19:09 2018 @author: hello4720 """ import numpy as np import pandas as pd import lightgbm as lgb from sklearn import metrics from sklearn.mod…