细聊分布式ID生成方法 https://mp.weixin.qq.com/s?__biz=MjM5ODYxMDA5OQ==&mid=403837240&idx=1&sn=ae9f2bf0cc5b0f68f9a2213485313127&scene=0&key=710a5d99946419d9131c07b23b6a64817dae072d5d487704ca48973eaf609b4a353f531f14c3bf9e8afd66ae7a06428e&asce…
一.需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id (2)订单标识:order-id (3)帖子标识:tiezi-id 这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序. 这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: (1)拉取最新的一页消息:selectmessage-id/ order by time/ limit 100 (2)拉取最新的一页订单…
一.需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id (2)订单标识:order-id (3)帖子标识:tiezi-id 这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序. 这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: (1)拉取最新的一页消息:selectmessage-id/ order by time/ limit 100 (2)拉取最新的一页订单…
一.需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id (2)订单标识:order-id (3)帖子标识:tiezi-id 这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序. 这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: (1)拉取最新的一页消息:selectmessage-id/ order by time/ limit 100 (2)拉取最新的一页订单…
本文主要讨论这么几个问题: (1)数据库主从延时为何会导致缓存数据不一致 (2)优化思路与方案 一.需求缘起 上一篇<缓存架构设计细节二三事>中有一个小优化点,在只有主库时,通过“串行化”的思路可以解决缓存与数据库中数据不一致.引发大家热烈讨论的点是“在主从同步,读写分离的数据库架构下,有可能出现脏数据入缓存的情况,此时串行化方案不再适用了”,这就是本文要讨论的主题. 二.为什么数据会不一致 为什么会读到脏数据,有这么几种情况: (1)单库情况下,服务层的并发读写,缓存与数据库的操作交叉进行…
第一章聊了[“为什么要进行服务化,服务化究竟解决什么问题”] 第二章聊了[“微服务的服务粒度选型”] 第三章聊了[“为什么说要搞定微服务架构,先搞定RPC框架?”] 上一章聊了[“微服务架构之RPC-client序列化细节”] 通过上篇文章的介绍,知道了要实施微服务,首先要搞定RPC框架,RPC框架分为客户端部分与服务端部分. RPC-client的部分又分为: (1)序列化反序列化的部分(上图中的1.4) (2)发送字节流与接收字节流的部分(上图中的2.3) 前一篇文章讨论了序列化与范序列化的…
缘起:有个朋友问我分区表在58的应用,我回答不出来,在我印象中,百度.58都没有听说有分区表相关的应用,业内进行一些技术交流的时候也更多的是自己分库分表,而不是使用分区表.于是去网上查了一下,并询问了58到家的DBA专家,将自己收到的信息沉淀下来,share给大伙. 解决什么问题? 回答:当mysql单表的数据库过大时,数据库的访问速度会下降,“数据量大”问题的常见解决方案是“水平切分”. mysql常见的水平切分方式有哪些? 回答:分库分表,分区表 什么是mysql的分库分表? 回答:把一个很…
上一篇文章“一分钟了解负载均衡的一切”引起了不少同学的关注,评论中大家争论的比较多的一个技术点是接入层负载均衡技术,部分同学持这样的观点: 1)nginx前端加入lvs和keepalived可以替代“DNS轮询” 2)F5能搞定接入层高可用.扩展性.负载均衡,可以替代“DNS轮询” “DNS轮询”究竟是不是过时的技术,是不是可以被其他方案替代,接入层架构技术演进,是本文将要细致讨论的内容. 一.问题域 nginx.lvs.keepalived.f5.DNS轮询,每每提到这些技术,往往讨论的是接入…
第一章聊了[“为什么要进行服务化,服务化究竟解决什么问题”] 第二章聊了[“微服务的服务粒度选型”] 上一篇聊了[“为什么说要搞定微服务架构,先搞定RPC框架?”] 通过上篇文章的介绍,知道了要实施微服务,首先要搞定RPC框架,RPC框架的职责要向[调用方]和[服务提供方]屏蔽各种复杂性: (1)让调用方感觉就像调用本地函数一样 (2)让服务提供方感觉就像实现一个本地函数一样来实现服务 整个RPC框架又分为client部分与server部分: RPC-client的部分流程如上图,要进行序列化反…
第一章聊了[“为什么要进行服务化,服务化究竟解决什么问题”] 第二章聊了[“微服务的服务粒度选型”] 今天开始聊一些微服务的实践,第一块,RPC框架的原理及实践,为什么说要搞定微服务架构,先搞定RPC框架呢? 一.需求缘起 服务化的一个好处就是,不限定服务的提供方使用什么技术选型,能够实现大公司跨团队的技术解耦,如下图: 服务A是欧洲团队提供服务,欧洲团队的技术背景是Java,可以用Java实现服务: 服务B是美洲团队提供服务,可以用C++实现服务: 服务C是中国团队提供服务,可以用Go实现服务…