目录 构建一个简单的模型 序贯(Sequential)模型 网络层的构造 模型训练和参数评价 模型训练 模型的训练 tf.data的数据集 模型评估和预测 基本模型的建立 网络层模型 模型子类函数构建 回调函数Callbacks 模型保存和载入 网络参数保存Weights only 配置参数保存Configuration only 完整模型保存 目前keras API 已经整合到 tensorflow最新版本1.9.0 中,在tensorflow中通过tf.keras就可以调用keras. im…
目录 Fashion MNIST数据库 分类模型的建立 模型预测 总体代码 主要介绍基于tf.keras的Fashion MNIST数据库分类, 官方文档地址为:https://tensorflow.google.cn/tutorials/keras/basic_classification 文本分类类似,官网文档地址为https://tensorflow.google.cn/tutorials/keras/basic_text_classification 首先是函数的调用,对于tensorf…
过拟合和欠拟合 简单来说过拟合就是模型训练集精度高,测试集训练精度低:欠拟合则是模型训练集和测试集训练精度都低. 官方文档地址为 https://tensorflow.google.cn/tutorials/keras/overfit_and_underfit 过拟合和欠拟合 以IMDB dataset为例,对于过拟合和欠拟合,不同模型的测试集和验证集损失函数图如下: baseline模型结构为:10000-16-16-1 smaller_model模型结构为:10000-4-4-1 bigge…
目录 设置 基于checkpoints的模型保存 通过ModelCheckpoint模块来自动保存数据 手动保存权重 整个模型保存 总体代码 模型可以在训练中或者训练完成后保存.具体文档参考:https://tensorflow.google.cn/tutorials/keras/save_and_restore_models 设置 依赖项设置: !pip install -q h5py pyyaml 模型建立: from __future__ import absolute_import, d…
目录 波士顿房价数据集 数据集 数据归一化 模型训练和预测 模型建立和训练 模型预测 总结 回归主要基于波士顿房价数据库进行建模,官方文档地址为:https://tensorflow.google.cn/tutorials/keras/basic_regression 波士顿房价数据集 数据集 波士顿数据集是一个回归问题.每个类的观察值数量是均等的,共有 506 个观察,13 个输入变量和1个输出变量.每条数据包含房屋以及房屋周围的详细信息.其中包含城镇犯罪率,一氧化氮浓度,住宅平均房间数,到中…
1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深度学习框架. Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果,如果有如下需求,可以优先选择Keras: a)简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) b)支持CNN和RNN,或二者的结合                 c)无缝CPU和GPU切换 2)设计原则 a)用户友好:Keras是为人类而不是天顶星人设计的API.用户的使…
本文转载自:http://www.cnblogs.com/lc1217/p/7132364.html 1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深度学习框架. Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果,如果有如下需求,可以优先选择Keras: a)简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) b)支持CNN和RNN,或二者的结合                 c)无缝…
转自http://www.cnblogs.com/lc1217/p/7132364.html 1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深度学习框架. Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果,如果有如下需求,可以优先选择Keras: a)简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) b)支持CNN和RNN,或二者的结合 c)无缝CPU和GPU切换 2)设计原则 a)用…
说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例: 把上述的计算结果269带入此公式,得出f(x)=1 1.3 神经元 如图是一个人工神经元的模型: (…
本文转载自:https://www.cnblogs.com/lc1217/p/7324935.html 说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例…