Acwing 883高斯消元法的运用】的更多相关文章

Acwing 883高斯消元法的运用 解线性方程组 Acwing 883 输入一个包含 n 个方程 n 个未知数的线性方程组. 方程组中的系数为实数. 求解这个方程组. 下图为一个包含 m 个方程 n 个未知数的线性方程组示例: 输入格式 第一行包含整数 n. 接下来 n 行,每行包含 n+1 个实数,表示一个方程的 n 个系数以及等号右侧的常数. 输出格式 如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解,结果保留两位小数. 如果给定线性方程组存在无数解,…
Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Description Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 squares. One side of each piece is white and the…
题目链接: http://poj.org/problem?id=1222 题目大意:一堆开关,或开或关.每个开关按下后,周围4个方向开关反转.问使最后所有开关都关闭的,开关按法.0表示不按,1表示按. 解题思路: 一共只有5*6个开关. 对于每个开关,设其最终状态为x5,上下左右四个开关最终状态分别为x1,x2,x3,x4, 那么有方程x1^x2^x3^x4^x5^初始状态=0. 这样就有30个方程.解这30个线性方程组即可. 用高斯消元法来解方程组,变化如下: ①对于原本找列中绝对值最大这一步…
传送门:hdu 5833 Zhu and 772002 题意:给n个数,每个数的素数因子不大于2000,让你从其中选则大于等于1个数相乘之后的结果为完全平方数 思路: 小于等于2000的素数一共也只有305个 一个数,如果他某个素数因子的幂为偶,那这个素数的可以不用考虑:如果幂为奇数,那这个素数就应当被考虑如何与其他数凑成幂为偶数.例如12,可以表示为2^2*3,2的幂次为2,3的幂次为1,所以,如果要和其他数相乘为完全平方数,那么一定要与素数因子3为奇次的合并 那么根据上面两条,我们可以列出方…
题目要读很久才能理解它的意思和笑点(如果你也看过那个笑话的话),读懂之后就会发现是一个高斯消元法的题目,对于我来说难点不在高斯消元,而在于字符串处理.先来说说题意吧: 总共有n个人,n个人都会有一段话,先是princess说话,里面如果提到了a1,a2,a3...这几个不同的人的话,对应提到的次数是x1,x2,x3..的话,那么下一个对话是ai这个人说的概率是xi/(x1+x2+x3)....,然后下一个人的对话里也会提到别的人,然后也有一定的概率会有下一轮对话,现在要问的就是,给定了这些对话,…
第一次学怎么用高斯消元法解抑或方程组,思想其实很简单,方法可以看下面的链接:http://blog.csdn.net/zhuichao001/article/details/5440843 有了这种思想之后,一些简单的翻牌问题也算是有了头绪,还记得之前做一到翻一次牌影响曼哈顿距离为k的点的题,现在看来是有思路,但那个貌似是900个点,不好搞呀,自己回头再想想吧..先贴一记水题的代码 #include<iostream> #include<cstring> #include<c…
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组.所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 以上是线性代数课的回顾,下面来说说高斯消元法在编程中的应用. 首先,先介绍程序中高斯消元法的步骤:(我们设方程组中方程的个数为equ,变元的个数为var,注意:一般情况下是n个方程,n个变元,但是有些题目就故意让方程数与变元数…
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. 所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 1.线性方程组 1)构造增广矩阵,即系数矩阵A增加上常数向量b(A|b) 2)通过以交换行.某行乘以非负常数和两行相加这三种初等变化将原系统转化为更简单的三角形式(triangular form) 注:这里的初等变化可以通过…
根据用途,元器件的质量等级可分为:用于元器件生产控制.选择和采购的质量等级和用于电子设备可靠性预计的质量等级两类,两者有所区别,又相互联系. 用于元器件生产控制.选择和采购的质量等级 元器件的质量等级与其生产过程执行的规范是密不可分的,规范要求质量控制的严格程度,决定了元器件质量等级的高低.在大多数军工产品中采用国产元器件的质量等级分为:(七专)7905.(七专)8406.(七专)840611A(半导体分立器件).(七专)补充技术协议.国军标(GJB)等五种.前四种可以认为是四种质量等级,而国军…
题目链接:https://www.acwing.com/problem/content/605/ 题目大意: 略 分析: 用dp[i][j]表示用j元钱能在前i只怪兽上所能贿赂到的最大武力值. 有一种情况就是打到第i只怪兽所需的最低花费大于j,那么令dp[i][j] = -1. 那么dp[i + 1][j],也就是同样用j元钱能在前i + 1只怪兽上所能贿赂到的最大武力值是多少呢?有3种情况: 1:dp[i][j] = -1,显然dp[i + 1][j] = -1. 2:dp[i][j] < d…