LOJ 题目链接 & 洛谷题目链接 题意:商店里有 \(n\) 杯果汁,第 \(i\) 杯果汁有美味度 \(d_i\),单价为 \(p_i\) 元/升.最多可以添加 \(l_i\) 升.有 \(m\) 次询问,每次给出两个数 \(G,L\),你可以将商店里的一些果汁混合起来,使得他们的总体积不小于 \(L\) 升,总价格不超过 \(G\) 元,问:选择的果汁中美味度最小值的最大值是多少. \(1 \leq n,m \leq 10^5\),\(1 \leq d_i,p_i,l_i \leq 10^…
问题描述 小 R 热衷于做黑暗料理,尤其是混合果汁. 商店里有 n 种果汁,编号为 0, 1, 2, . . . , n − 1.i 号果汁的美味度是 di,每升价格为 pi.小 R 在制作混合果汁时,还有一些特殊的规定,即在一瓶混合果汁中,i 号果汁最 多只能添加 li 升. 现在有 m 个小朋友过来找小 R 要混合果汁喝,他们都希望小 R 用商店里的果汁 制作成一瓶混合果汁.其中,第 j 个小朋友希望他得到的混合果汁总价格不大于 gj,体 积不小于 Lj.在上述这些限制条件下,小朋友们还希望…
题目描述 小 R 热衷于做黑暗料理,尤其是混合果汁. 商店里有 nn 种果汁,编号为 0,1,\cdots,n-10,1,⋯,n−1 . ii 号果汁的美味度是 d_idi​ ,每升价格为 p_ipi​ .小 R 在制作混合果汁时,还有一些特殊的规定,即在一瓶混合果汁中, ii 号果汁最多只能添加 l_ili​ 升. 现在有 mm 个小朋友过来找小 R 要混合果汁喝,他们都希望小 R 用商店里的果汁制作成一瓶混合果汁.其中,第 jj 个小朋友希望他得到的混合果汁总价格不大于 g_jgj​ ,体积…
\(\mathcal{Description}\)   Link.   \(n\) 种果汁,第 \(i\) 种美味度为 \(d_i\),每升价格 \(p_i\),一共 \(l_i\) 升.\(m\) 组询问,给定花费上限 \(g\) 和果汁需求量 \(L\),求混合多种果汁以满足要求时,所用果汁最小美味度的最大值.   \(n,m,p_i\le10^5\). \(\mathcal{Solution}\)   最小值最大,显然二分.   需要 check:能否用美味度不小于 \(mid\) 的果汁…
洛谷题目传送门 YCB巨佬对此题有详细的讲解.%YCB%请点这里 思路分析 不能套用静态主席树的方法了.因为的\(N\)个线段树相互纠缠,一旦改了一个点,整个主席树统统都要改一遍...... 话说我真的快要忘了有一种数据结构,能支持单点修改,区间查询,更重要的是,常数优秀的它专门用来高效维护前缀和!!它就是-- !树状数组! 之前静态主席树要保存的每个线段树\([1,i]\),不也是一个庞大的前缀吗?于是,把树状数组套在线段树上,构成支持动态修改的主席树.每个树状数组的节点即为一个线段树的根节点…
传送门 简单主席树啊. 但听说有随机算法可以秒掉%%%(本蒟蒻并不会) 直接维护值域内所有数的出现次数之和. 当这个值不大于区间总长度的一半时显然不存在合法的数. 这样在主席树上二分查值就行了. 代码: #include<bits/stdc++.h> #define N 500005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); whi…
P3939 数颜色 题目背景 大样例下发链接:http://pan.baidu.com/s/1c0LbQ2 密码:jigg 题目描述 小 C 的兔子不是雪白的,而是五彩缤纷的.每只兔子都有一种颜色,不同的兔子可能有 相同的颜色.小 C 把她标号从 1 到 n" role="presentation" style="position: relative;">nn 的n" role="presentation" style=…
题面 传送门 题解 首先考虑一个贪心,我们把所有的人按\(a_i\)排个序,那么排序后的第一个人到\(k\),第二个人到\(k+1\),...,第\(i\)个人到\(k+i-1\),易证这样一定是最优的 然后发现这里有一个很重要的性质,\(a_i\)互不相同.那么就必定存在一个点\(mid\),在\(mid\)左边(包括\(mid\))的空格子和人一样多,右边(不包括\(mid\))也一样多 那么很明显,\(mid\)左边的所有人都需要往右跑,\(mid\)右边的所有人都需要往左跑 然后来康康答…
题目传送门:LOJ #3043. 题意简述: 你需要模拟线段树的懒标记过程. 初始时有一棵什么标记都没有的 \(n\) 阶线段树. 每次修改会把当前所有的线段树复制一份,然后对于这些线段树实行一次区间修改操作. 即每次修改后线段树棵数翻倍,第 \(i\) 次修改后,线段树共有 \(2^i\) 棵. 区间修改操作的伪代码如下: 和我日常写的递归式线段树完全一致. 每次询问你这些线段树中有懒标记的节点总数. 修改和询问的总个数为 \(q\),\(1\le n,q\le 10^5\). 题解: 灵感来…
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <string> #include <vector> using namespace std; void setIO(string a) { string in=a+".in",out=a+".out"; freopen(in.c_str(),"r&qu…