作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCostFunction 计算代价和梯度.实现 OneVsAll 使用 fmincg 函数进行训练.使用 OneVsAll 里训练好的 theta 对 X 的数据类型进行预测,得到平均准确率. (2)多分类神经网络:两层 theta 权重值在 ex3weights 里已提供.参数不需要调,只需要在 pr…
课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 backpropagation神经网络算法, 对图片中手写数字 0-9 进行识别. 数据集 :ex4data1.mat.手写数字图片数据,5000个样例.每张图片20px * 20px,也就是一共400个特征.数据集X维度为5000 * 400 ex4weights.mat.神经网络每一层的权重. 文件…
作业说明 Exercise 1,Week 2,使用Octave实现线性回归模型.数据集  ex1data1.txt ,ex1data2.txt 单变量线性回归必须实现,实现代价函数计算Computing Cost 和 梯度下降Gradient Descent. 多变量线性回归可选,实现 特征Feature Normalization.代价函数计算Computing Cost . 梯度下降Gradient Descent  和 Normal Equations . 文件清单 ex1.m ex1_m…
作业说明 Exercise 2,Week 3,使用Octave实现逻辑回归模型.数据集  ex2data1.txt ,ex2data2.txt 实现 Sigmoid .代价函数计算Computing Cost 和 梯度下降Gradient Descent. 文件清单 ex2.m - Octave/MATLAB script that steps you through the exercise ex2 reg.m - Octave/MATLAB script for the later part…
作业文件 machine-learning-ex3 1. 多类分类(Multi-class Classification) 在这一部分练习,我们将会使用逻辑回归和神经网络两种方法来识别手写体数字0到9.手写体数字自动识别在今天有很 广泛的应用.这个联系将会向我们展示我们学习到的方法是如何应用到这个分类任务的.我们可以拓展我们之前实现的逻辑回归方法,并应用到一对多的分类任务. 1.1 数据集 在 ex3data1.mat文件中有给定的手写体数字的数据集,里面有5000个训练样本..mat格式数据表…
编程作业文件: machine-learning-ex2 1. Logistic Regression (逻辑回归) 有之前学生的数据,建立逻辑回归模型预测,根据两次考试结果预测一个学生是否有资格被大学录取. 载入学生数据,第1,2列分别为两次考试结果,第3列为录取情况. % Load Data % The first two columns contain the exam scores and the third column contains the label. data = load(…
编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matlab工作区内并将machine-learning-live-scripts内的ex1.mlx拖入到machine-learning-ex1\ex1中 在命令提示符区输入subimit命令,并填写邮箱与提交凭证来提交作业. 1.A simple MATLAB function 修改warmUpExerc…
问题描述:使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 一.逻辑回归实现: 数据加载到octave中,如下图所示: ①样本数据的可视化 随机选择100个样本数据,使用Octave可视化的结果如下: ②使用逻辑回归来实现多分类问题(one-vs-all) 所谓多分类问题,是指分类的结果为三类以上.比如,预测明天的天气结果为三类:晴(用y==1表示).阴(用y==2表示).雨(用y==3表示) 分类的思想,其实与逻辑…
作业: machine-learning-ex6 1. 支持向量机(Support Vector Machines) 在这节,我们将使用支持向量机来处理二维数据.通过实验将会帮助我们获得一个直观感受SVM是怎样工作的.以及如何使用高斯核(Gaussian kernel ).下一节我们将使用SVM建立一个垃圾邮件分类器. 1.1 样本数据1 以二维线性可分数据开始.下面代码部分将会可视化此数据集如图1所示.在这个数据集中,正样本使签为1使用+表示,负样本标签为0使用o表示,由一条间隙隔开.注意有一…
作业文件: machine-learning-ex5 1. 正则化线性回归 在本次练习的前半部分,我们将会正则化的线性回归模型来利用水库中水位的变化预测流出大坝的水量,后半部分我们对调试的学习算法进行了诊断,并检查了偏差和方差的影响. 1.1 可视化数据集 x表示水位变化,y表示水流量.整个数据集分成三个部分 模型的训练集,用来从X,y中学习参数. 交叉验证集,从Xval, yval中决定正则化参数 测试集,用来预测的样本,从数据集为 Xtest, ytest. 绘制的图像如图1 1.2 正则化…