首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
51nod 编辑距离问题(动态规划)
】的更多相关文章
CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划)
CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划) Description 字符串是数据结构和计算机语言里很重要的数据类型,在计算机语言中,对于字符串我们有很多的操作定义,因此我们可以对字符串进行很多复杂的运算和操作.实际上,所有复杂的字符串操作都是由字符串的基本操作组成.例如,把子串a替换为子串b,就是用查找.删除和插入这三个基本操作实现的.因此,在复杂字符串操作的编程中,为了提高程序中字符操作的速度,我们就应该用最少的基本操作完成复杂操作. 在这里,假设字符串的基本…
51nod 编辑距离问题(动态规划)
编辑距离问题 给定两个字符串S和T,对于T我们允许三种操作:(1) 在任意位置添加任意字符(2) 删除存在的任意字符(3) 修改任意字符 问最少操作多少次可以把字符串T变成S? 例如: S= “ABCF” T = “DBFG”那么我们可以 (1) 把D改为A(2) 删掉G(3) 加入C 所以答案是3. 输入 第1行:字符串a(a的长度 <= 1000). 第2行:字符串b(b的长度 <= 1000). 输出 输入a和b的编辑距离 输入示例 kitten sitting 输出示例 3 请选…
51NOD 1183编辑距离(动态规划)
>>点击进入原题测试<< 思路:这个题放在基础题,分值还是零分,好歹也给人家动态规划一点面子啊!刚开始写的想法是找到其最大公共字串,然后用两个字符串中最长字符串的长度减掉最大公共字符串的长度,这个思路应该也是对的,几天前写的,好像没用动态规划写然后错了:然后百度了下是用动态规划,然后重新写了下.换了个思路,然后手写了下样例的dp数组,寻找状态之间的关系. 以下AC代码: #include<string> #include<iostream> using na…
编辑距离及其动态规划算法(Java代码)
编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字符: 例如,将单词kitten转成单词sitting需要如下三个步骤: sitten (k→s) sittin (e→i) sitting (→g) 俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 编辑距离的应用在信息检索.拼写纠错.机器翻译.命名实体抽取.同义词寻找…
算法笔记1 - 编辑距离及其动态规划算法(Java代码)
转载请标注原链接:http://www.cnblogs.com/xczyd/p/3808035.html 编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字符: 例如,将单词kitten转成单词sitting需要如下三个步骤: sitten (k→s) sittin (e→i) sitting (→g) 俄罗斯科学家Vladimir Levensh…
51nod1183 编辑距离【动态规划】
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以kitten和sitting的编辑距离是3.俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 给出两个字符串a,b,求…
51nod 简单的动态规划
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. Input 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) Output 输出最长的子序列,如果有多个,随意输出1个. Inp…
51nod--1183 编辑距离(动态规划)
题目: 1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以kitten和sitting的…
文本相似度 余弦值相似度算法 VS L氏编辑距离(动态规划)
设置n为字符串s的长度.("我是个小仙女") 设置m为字符串t的长度.("我不是个小仙女") 如果n等于0,返回m并退出.如果m等于0,返回n并退出.构造两个向量v0[m+1] 和v1[m+1],串联0..m之间所有的元素. 2 初始化 v0 to 0..m. 3 检查 s (i from 1 to n) 中的每个字符. 4 检查 t (j from 1 to m) 中的每个字符 5 如果 s[i] 等于 t[j],则编辑代价cost为 0:如果 s[i] 不等于…
【TOJ 1072】编辑距离(动态规划)
描述 假设字符串的基本操作仅为:删除一个字符.插入一个字符和将一个字符修改成另一个字符这三种操作. 我们把进行了一次上述三种操作的任意一种操作称为进行了一步字符基本操作. 下面我们定义两个字符串的编辑距离:对于两个字符串a和b,通过上述的基本操作,我们可以把a变成b或b变成a,那么字符串a变成字符串b需要的最少基本字符操作步数称为字符串a和字符串b的编辑距离. 例如:a="ABC",b="CBCD",则a与b的编辑距离为2. 你的任务就是:编一个快速的程序来计算任意…