SVM多分类】的更多相关文章

http://www.matlabsky.com/thread-9471-1-1.htmlSVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器.目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中:另一类是间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方…
前言 项目有一个模块需要将不同类别的图片进行分类,共有三个类别,使用SVM实现分类. 实现步骤: 1.创建训练样本库: 2.训练.测试SVM模型: 3.SVM的数据要求: 实现系统: windows_x64.opencv2.4.10. VS2013 实现过程: 1.创建训练样本库: 1)将图片以包含类别的名称进行命名,比如0(1).jpg等等: 2)将所有已命名正确的训练样本保存在同一个文件夹中: 3)在训练样本库的文件夹目录下创建python源文件: python代码: import sys…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_classfication(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.lo…
实验要求数据说明 :数据集data4train.mat是一个2*150的矩阵,代表了150个样本,每个样本具有两维特征,其类标在truelabel.mat文件中,trainning sample 图展示了理想的分类类结果:方案选择:选择并实现一种两分类方法(如感知机方法,SVM等):在此基础上设计使用该二分类器实现三分类问题的策略,并程序实现,画出分类结果直接采用现成的可实现多分类的方法(如多类SVM,BP网络等)进行问题求解.画出分类结果.我选择第二种,时间不够,只能使用sklearn中的sv…
svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变. opencv中的svm分类代码,来源于libsvm. #include "stdafx.h" #include "opencv2/opencv.hpp" using namespace cv; using namespace cv::ml; int main(int, char**) { , height = ; Mat image = Mat::zer…
SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确率越高,但是泛化能力降低,也就是对测试数据的分类准确率降低.相反,减小C的话,容许训练样本中有一些误分类错误样本,泛化能力强.对于训练样本带有噪声的情况,一般采用后者,把训练样本集中错误分类的样本作为噪声. kernel: str参数 默认为‘rbf’ 算法中采用的核函数类型,可选参数有: ‘lin…
前言 实现分类可以使用SVM方法,但是需要人工调参,具体过程请参考here,这个比较麻烦,小鹅不喜欢麻烦,正好看到SVM可以自动调优,甚好! 注意 1.reshape的使用: https://docs.opencv.org/3.3.1/d3/d63/classcv_1_1Mat.html#a4eb96e3251417fa88b78e2abd6cfd7d8 cv::Mat cv::Mat::reshape ( ) const 参数 cn: New number of channels. If th…
上一篇介绍了OPENCV中SVM的简单使用,以及自带的一个二分类问题. 例子中的标签是程序手动写的,输入也是手动加的二维坐标点. 对于复杂问题就必须使用数据集中的图片进行训练,标签使用TXT文件或程序设置好,下面以 IMM Face Database 中的人脸数据作为示例, 实现人脸的HOG特征提取及SVM识别人脸. 数据集参考我的http://www.cnblogs.com/chenzhefan/p/7624811.html:只选取其中5类人,每类5副图片作为训练. 提取人脸HOG特征的维数为…
前面几节我们讨论了SVM原理.求解线性分类下SVM的SMO方法.本节将分析SVM处理非线性分类的相关问题. 一般的非线性分类例如以下左所看到的(后面我们将实战以下这种情况): 能够看到在原始空间中你想用一个直线分类面划分开来是不可能了,除非圆.而当你把数据点映射一下成右图所看到的的情况后,如今数据点明显看上去是线性可分的,那么在这个空间上的数据点我们再用前面的SVM算法去处理,就能够得到每一个数据点的分类情况了,而这个分类情况也是我们在低维空间的情况.也就是说,单纯的SVM是不能处理非线性问题的…
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Wi…