Keras tutorial - the Happy House Welcome to the first assignment of week 2. In this assignment, you will: Learn to use Keras, a high-level neural networks API (programming framework), written in Python and capable of running on top of several lower-l…
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by Step Convolutional Neural Networks: Application Residual Networks Autonomous driving - Car detection YOLO Face Recognition for the Happy House Art: N…
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by Step Convolutional Neural Networks: Application Residual Networks Autonomous driving - Car detection YOLO Face Recognition for the Happy House Art: N…
Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the dimensionality reduction of a volume in a very deep network Understand and Implement a Residual network Build a deep neural network using Keras Implem…
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In this assignment, you will learn about Neural Style Transfer. This algorithm was created by Gatys et al. (2015) (https://arxiv.org/abs/1508.06576). In this as…
Convolutional Neural Networks: Application Welcome to Course 4's second assignment! In this notebook, you will: Implement helper functions that you will use when implementing a TensorFlow model Implement a fully functioning ConvNet using TensorFlow (…
Convolutional Neural Networks: Step by Step Welcome to Course 4's first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagati…
第二周 深度卷积网络:实例探究(Deep convolutional models: case studies) 为什么要进行实例探究?(Why look at case studies?) 这周我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢?上周我们讲了基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一…
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010大赛中的120万张高清图像分为1000个不同的类别.对测试数据,我们得到了top-1误差率37.5%,以及top-5误差率17.0%,这个效果比之前最顶尖的都要好得多.该神经网络有…
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky University of Toronto 多伦多大学 kriz@cs.utoronto.ca Ilya Sutskever University of Toronto 多伦多大学 ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toront…
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC-2010竞赛的120万高分辨率的图像分到1000不同的类别中.在测试数据上,我们得到了top-1 37.5%, top-5 17.0%的错误率,这个结果比目前的最好结果好很多.这个神经网络有6000万参数和650000个神经元,包含5个卷积层(某些卷积层后面带有池化层)和3个全连接层,最后是一个1…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络.并在图像识别的benchmark数据集上取得了卓越的成绩. 和之间的LeNet还是有着异曲同工之妙.这里涉及到 category 种类多的因素,该网络考虑了多通道卷积操作, 卷积操作也不是 LeNet 的单通道…
This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning based problems, one of which was Image Upscaling. This post will show some preliminary results, discuss our model and its possible applications to Flipboa…
Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning based problems, one of which was Image Upscaling. This post will show some preliminary results, dis…
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 Abstract摘要 We study characteristics of receptive fields of units in deep convolutional networks. The receptive field size is a crucial issue in many vis…
Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welcome There are still something confuse me! working how to paste the jupyter here.................................................... Convolutional Neur…
论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks> 论文作者:Y ushi Chen, Member , IEEE, Hanlu Jiang, Chunyang Li, Xiuping Jia, Senior Member , IEEE, and Pedram Ghamisi, Member , IEEE 论文发表年份:20…
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recognition?) 欢迎来到第四周,即这门课卷积神经网络课程的最后一周.到目前为止,你学了很多卷积神经网络的知识.我这周准备向你展示一些重要的卷积神经网络的特殊应用,我们将从人脸识别开始,之后讲神经风格迁移,你将有机会在编程作业中实现这部分内容,创造自己的艺术作品. 让我们先从人脸识别开始,我这里有一个有意思的演…
一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“薄饼”,其中包括了图片的高度.宽度和深度(即颜色,用RGB表示). 在不改变权重的情况下,把这个上方具有k个输出的小神经网络对应的小块滑遍整个图像,可以得到一个宽度.高度不同,而且深度也不同的新图像. 卷积时有很多种填充图像的方法,以下主要介绍两种,一种是相同填充,一种是有效填充. 如图中紫色方框所…
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/comment-page-4/?unapproved=31867&moderation-hash=1ac28e426bc9919dc1a295563f9c60ae#comment-31867 一.什么是卷积神经网络.为什么卷积神经网络很重要? 卷…
Convolutional Neural Networks卷积神经网络 Contents 一:前导 Back Propagation反向传播算法 网络结构 学习算法 二:Convolutional Neural Networks卷积神经网络 三:LeCun的LeNet-5 四:CNNs的训练过程 五:总结 本文是我在20140822的周报,其中部分参照了以下博文或论文,如果在文中有一些没说明白的地方,可以查阅他们.对Yann LeCun前辈,和celerychen2009.zouxy09表示感谢…
Linear Classification 在上一讲里,我们介绍了图像分类问题以及一个简单的分类模型K-NN模型,我们已经知道K-NN的模型有几个严重的缺陷,第一就是要保存训练集里的所有样本,这个比较消耗存储空间:第二就是要遍历所有的训练样本,这种逐一比较的方式比较耗时而低效. 现在,我们要介绍一种更加强大的图像分类模型,这个模型会很自然地引申出神经网络和Convolutional Neural Networks(CNN),这个模型有两个重要的组成部分,一个是score function,将原始…
1 Foundations of Convolutional Neural Networks 1.1 cv问题 图像分类.目标检测.风格转换.但是高像素的图片会带来许多许多的特征. 1.2 边缘检测(卷积操作) 图像和卷积核(滤波器)移动相乘.横向.纵向滤波器.过滤器里的值也是可以学习的. 1.3 Padding(补白) 卷积会使图像变小,丢掉部分边缘信息.所以需要将边缘补白,补充为0. 假设图片尺寸为n,卷积尺寸为f.卷积之后会变为n-f+1尺寸. padd尺寸为p.valid convolu…
第一周 卷积神经网络(Foundations of Convolutional Neural Networks) 计算机视觉(Computer vision) 计算机视觉是一个飞速发展的一个领域,这多亏了深度学习. 深度学习与计算机视觉可以帮助汽车,查明周围的行人和汽车,并帮助汽车避开它们. 还使得人脸识别技术变得更加效率和精准,你们即将能够体验到或早已体验过仅仅通过刷脸就能解锁手机或者门锁. 当你解锁了手机,我猜手机上一定有很多分享图片的应用.在上面,你能看到美食,酒店或美丽风景的图片. 有些…
论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew G.Howard  Menglong Zhu  Bo Chen ..... 论文地址:https://arxiv.org/pdf/1704.04861.pdf (https://arxiv.org/abs/1704.04861) 代码地址: TensorFlow官方 github-Tensorflo…
论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 论文地址:https://arxiv.org/abs/1704.04861…
 申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习…
The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David Masko 摘要 本论文从实验的角度调研了训练数据的不均衡性对采用CNN解决图像分类问题的性能影响.CIFAR-10数据集包含10个不同类别的60000个图像,用来构建不同类间分布的数据集.例如,一些训练集中包含一个类别的图像数目与其他类别的图像数目比例失衡.用这些训练集分别来训练一个CNN,度量其得…
转自:http://blog.csdn.net/zouxy09/article/details/8781543 9.5.Convolutional Neural Networks卷积神经网络 卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点.它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量.该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程.卷积网络是为识别…