这题首先要会线性筛约数个数,并求出前缀和 bool vis[maxn]; int mm,mu[maxn],prime[maxn],num[maxn],sum[maxn],d[maxn],sum1[maxn]; void init(){ mu[]=;num[]=; ;i<maxn;i++){ if(!vis[i]){ prime[++mm]=i; mu[i]=-; num[i]=; d[i]=; } ;j<=mm;j++){ if(prime[j]*i>=maxn)break; vis[i…
https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/details/77056706 莫比乌斯反演,我现在莫比乌斯反演都不会写不会推了. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath&…
link 设\(d(x)\)表示x约数个数,给定n,m,\(\sum_{i=1}^n\sum_{j=1}^md(ij)\) 多组询问,1<=T<=50000,1<=N, M<=50000 前置知识:\(d(ij)=\sum_{x|i}\sum_{y|j}[\gcd(x,y)=1]\) 证明:\(xy\)一定是\(ij\)的约数.考虑一个质数\(p\),\(i\)中包含\(p^a\),\(j\)中包含\(p^b\),则\(ij\)中包含的是\(p^{a+b}\).若\(\gcd(x,…
题目描述 设d(x)d(x)d(x)为xxx的约数个数,给定NNN.MMM,求 ∑i=1N∑j=1Md(ij)\sum^{N}_{i=1}\sum^{M}_{j=1} d(ij)i=1∑N​j=1∑M​d(ij) N,M,T<=50000N,M,T<=50000N,M,T<=50000 题目分析 首先很不显然的有这样一个结论: d(ij)=∑x∣i∑y∣j[(x,y)==1]d(ij)=\sum_{x|i}\sum_{y|j}[(x,y)==1]d(ij)=x∣i∑​y∣j∑​[(x,y…
https://ac.nowcoder.com/acm/contest/907/B t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数 分析: 根据约数和定理:对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则由约数个数定理可知n的正约数有(a₁+1)(a₂+1)(a₃+1)…(ak+1)个, 暴力算出每一个数的约数的个数,超时! 根据唯一分解定理,我们知道每一个数都可以用质因子的积表示,而约数的个数只与指数有关! 我们知道pn>…
今天来玩玩筛 英文:Sieve 有什么筛? 这里介绍:素数筛,欧拉筛,约数个数筛,约数和筛 为什么要用筛? 顾名思义,筛就是要漏掉没用的,留下有用的.最终筛出来1~n的数的一些信息. 为什么要用线性筛? 考虑最基础的线性筛素数,是O(n)的. 而一般的做法是: 1.对于每个m暴力枚举1~sqrt(m)看能否被整除.O(nsqrt(n)) 2.对于每个找到的素数,用它去将所有它的倍数的数都干掉.O(nlogn) 但是,即使是第二种,也有一个log 这是因为一个合数会被它的所有质因子筛一次.要重复质…
看这个题解吧:http://blog.csdn.net/wubaizhe/article/details/77338332 代码里顺便把几个常用的线性筛附上了. Key:1.gcd(i,j)==1利用莫比乌斯函数的性质进行转化. 2.变换求和符号的顺序. 3.发现,该式可以递推. 4.线性筛约数个数函数. #include<cstdio> #include<algorithm> using namespace std; #define MOD 1000000007 #define…
可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和. 于是先求出上述定义中的质数个数,线性筛即可.然后对每个最短时间求方案数,非常显然的组合数.最好特判一下l=1的情况,毕竟如果1作为质数会有奇怪的事. 我的线性筛……跑的几乎跟埃氏筛差不多慢. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #incl…
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 性质 两个积性函数的狄利克雷卷积仍为积性函数. 若积性函数满足 \(f(n^p)=f^p(n)\)则它一定是完全积性函数.因为一个数可以唯一分解,则它一定可以表示成质数相乘的形式:因为他时积性函数所以,\(f(\prod_{i=1}^{n}p_i)=\prod _{i=1}^{n}f(p_i)\),…
d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7) #include<cstdio> using namespace std; #define MOD 998244353ll #define MAXP 1000100 typedef long long ll; ll x,y; int T,K; bool isNotPrime[MAXP+10]; int num_prime,prime[MAXP+10]; void shai() { f…
素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都排除即可. #include<cstdio> #include<cmath> using namespace std; #define MAXP 1000100 #define EPS 0.00000001 typedef long long ll; ll L,R; bool isNo…
[BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\) 其中\(d(x)\)是\(x\)的约数个数 题解 orz ZSY 巨佬 根据玄学(我也不知道为什么)的公式 \[d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]\] 所以,所求等于 \[\sum_{i=1}^n\sum_{j=1}^m\sum_{u|i}\sum_{v|j}[…
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstring> #define re register using namespace std; template<typename T>T max(T &a,T &b){return a>b?a:b;} template<typename T>T min(T &a…
Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 思路:关键在于要知道X*Y的因子,为X的因子i和Y因子j的且满足i和j互质的个数. 然后…
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 2939  Solved: 2169 [Submit][Status][Discuss] Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input 3 Sample Output 5 题解 我们知道一个数x的约数个数…
Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M.   Output T行,每行一个整数,表示你所求的答案.   Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000   这篇blog讲得很不错http://blog.codebursts.co…
http://www.lydsy.com/JudgeOnline/problem.php?id=3994 (题目链接) 题意 多组询问,给出${n,m}$,求${\sum_{i=1}^n\sum_{j=1}^m d(i×j)}$,${d(i×j)}$为${ij}$的约数个数. Solution 看到这个式子感觉无从下手,这个${d(ij)}$比较丑,有一个比较经典的公式:$${d(nm)=\sum_{i|n}\sum_{j|m} [gcd(i,j)=1]}$$ 这个是怎么得来的呢.每一个${nm…
[BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 题解:依旧是这个结论 但由于这次是多…
题面: 传送门 思路: 首先,我们需要证明一个结论:d(i*j)等于sigma(gcd(x,y)==1),其中x为i的约数,y为j的约数 对于nm的每一个质因子pi分别考虑,设n = pi^ai + n',m = pi^bi + m' 那么显然质因子pi对d(nm)的贡献为(ai+bi+1) 同理,考虑右边的式子,我们发现质数pi对右侧做的贡献仍然是(ai+bi+1),即如下的(x,y) (pi^ai,1) (pi^(ai-1),1) ..... (1,1) .....(1,pi^(bi-1))…
http://www.lydsy.com/JudgeOnline/problem.php?id=3994 设d(x)为x的约数个数,给定N.M,求 用到的一个结论: 证明: 枚举n的约数i,枚举m的约数j 那么i*j一定是n*m的约数 d(nm)相当于不同的i*j 的个数 若i, j 不互质 设gcd(i,j)= g , 则 i= p*g ,j=q*g 那么i*j 可以 组成两个互质数p*g*g 和 q 的乘积 p*g*g 和 q 也都输n和m的约数 即p*g*g 和 q 也都是合法的i,j 所…
3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MB Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M.  Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=5000…
点此看题面 大致题意: 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^N\sum_{j=1}^Md(i·j)\). 莫比乌斯反演 这是一道莫比乌斯反演题. 一个重要的性质 首先我们要先了解\(d(i·j)\)这个函数的性质: \[d(i,j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]\] 证明: 我也不知道,应该就是枚举\(i\)和\(j\)的约数,求出其中不互质的约数对个数,避免重复计算. 一些定义 按照莫比乌斯反演的常见套路,我们可以定义\(…
题目大意 设d(x)为x的约数个数,\(t\)组询问,给定\(n,m\)(\(t,m,n\leq5*10^4\)),求$ \sum^n_{i=1}\sum^m_{j=1}d(i*j)$ 题解 假设\(n\leq m\) 设\(i=p_1^{a_1}*p_2^{a_2}*...*p_k^{a_k},j=p_1^{b_1}*p_2^{b_2}*...*p_k^{b_k}\) 对于\(i*j\)的某个约数\(x\),设\(x=p_1^{c_1}*p_2^{c_2}*...*p_k^{c_k}\),那么…
Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 解题思路: 有一个喜闻乐见的结论: ${\sum_{i=1}^{n}}{\sum_{j=1}^{m}}{d(i*j)]}={\sum_{i=1}^{n}}{\su…
Problem bzoj3994 洛谷3327 题意:设 \(d(x)\) 为 \(x\) 的约数个数,给定 \(N,M\),求\(\sum_{i=1}^N\sum_{j=1}^Md(ij)\) \(1\leq N,M,T\leq 5\times 10^4\) Solution 第一次推出莫反式 ♪(^∇^*) 以下部分中小括号代表\(\gcd\),中括号代表取布尔值 一开始想枚举约数然后看有多少倍数出现过的,发现不好弄,转而想到 \(xy\) 的因数一定是 \(x\) 的因数和 \(y\) 的…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive divisors of nnn. For example, σ0(1)=1\sigma_0(1) = 1σ0​(1)=1, σ0(2)=2\sigma_0(2) = 2σ0​(2)=2 and σ0(6)=4\sigma_0(6) = 4σ0​(6)=4. Let S2(n)=∑i=1nσ0(i2).S_2(n…
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问,\(N,M,T \leq 50000\) 分析 首先有一个结论 \[d(nm)= \sum _{i |n} \sum _{j|m} [gcd(i,j)=1]\] 这是因为nm的约数都可以表示为\(i \times \frac{m}{j}\)的形式,并且为了不重复算,要保证\(gcd(i,j)=1\…
Sol 首先有个结论 \(\sum_{i=1}^{m}\sum_{j=1}^{n}d(i*j)=\sum_{i=1}^{m}\sum_{j=1}^{n}\sum_{x|i}\sum_{y|i}[gcd(x,y)==1]\) 证明:可以看po姐的博客 接着这个式子推 \[ 原式=\sum_{x=1}^{n}\sum_{y=1}^{m}([gcd(x, y)==1] * \sum_{x|i}\sum_{y|i} 1)\\ =\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x, y)…
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 Solution 莫比乌斯反演 但这题更多的是套路 首先,一个神奇的东东:\(d(nm)= \…